2K+ Graph Construction Framework:
Targeting Joint Degree Matrix and Beyond

Bdlint Tillman, Athina Markopoulou, Senior Member, IEEE, Minas Gjoka, and Carter T. Butts

Abstract—In this paper, we study the problem of generating
synthetic graphs that resemble real-world graphs in terms of
their degree correlations and potentially additional properties.
We present an algorithmic framework that generates simple
undirected graphs with the exact target joint degree matrix
JDM, which we refer to as 2K graphs, in linear time in the
number of edges. Our framework imposes minimal constraints
on the graph structure, which allows us to target additional graph
properties during construction, namely node attributes (2K+A),
clustering (both average clustering, 2.25K, and degree-dependent
clustering, 2.5K) and number of connected components (2K+CC).
We also define, for the first time, the problem of directed 2K
graph construction (D2K), we provide necessary and sufficient
conditions for realizability, and we develop efficient construction
algorithms. We evaluate our approach by creating synthetic
graphs that target real-world graphs both undirected (such as
Facebook) and directed (such as Twitter) and we show that it
brings significant benefits, in terms of accuracy and running time,
compared to state-of-the-art approaches.

Index Terms—network topology, complex networks, random
graphs, degree correlations, generative network models.

I. INTRODUCTION

T is often desirable to generate synthetic graphs that resem-

ble real-world networks with regards to certain properties
of interest. For example, researchers often want to simulate a
process on a realistic network topology but they may not have
access to a real-world network; or they may want to generate
several different realizations of graphs of interest. In this paper,
we target both directed and undirected graphs including, but
not limited to, online social networks.

There is a large body of work, in classic literature [1], [2],
[31, [4], as well as more recently [5], [6], [7], on generating
realizations of undirected graphs that exhibit (exactly) target
structural properties such as a degree sequence or a joint
degree matrix. In this paper, we adopt the dK-series framework
[5], [6], which describes graphs in terms of a series of
frequencies of induced subgraphs of increasing size, thus
providing an elegant way to trade off accuracy (in terms of
graph properties) vs. complexity (of the algorithms generating
graph realizations with those properties). Construction of 1K-
graphs (i.e., graphs with a target degree sequence) is well un-
derstood: efficient algorithms and realizability conditions are

B. Tillman, A. Markopoulou, and C. T. Butts are with the University
of California, Irvine, CA, USA. (E-mail: tillmanb@uci.edu, athina@uci.edu,
buttsc @uci.edu).

M. Gjoka was with the University of California, Irvine, when the work was
conducted. He is currently with Google, Santa Monica, CA, USA. (E-mail:
mgjoka@uci.edu.)

This work was supported by NSF Award 1526736 and a Networked Systems
Fellowship at UCI. A. Markopoulou is a member of the Center for Pervasive
Communications and Computing (CPCC) at UCL.

known since Havel-Hakimi [2], [3]. Construction of 2K-graphs
(graphs with a target joint degree matrix) has been studied in
parallel by several researchers, namely Amanatidis et al. [8],
Czabarka et al. [9], and our group [10]. For d > 2, which
is necessary for capturing the clustering exhibited in social
networks, we recently proved that the problem is NP-hard
[11] and we developed efficient heuristics [10]. In contrast,
construction of directed graphs was not as well developed:
results were known for construction of graphs with a target
directed degree sequence [12], [13], but the notion of directed
degree correlation, or directed dK-series for d > 2, has not
been previously defined.

In this paper, we present a general algorithmic framework
that allows us to construct synthetic graphs with an exact
target JDM (which we refer to as “2K” graphs) and potentially
additional properties (which we refer to as “2K+" graphs). The
core of our 2K+ framework is an algorithm that can provably
create synthetic undirected graphs with the exact target JDM,
and it does so efficiently (i.e., in linear time in the number
of edges), while imposing minimal constraints on the graph
structure (i.e., it can potentially create any 2K realization). We
exploit the latter feature to impose additional properties during
construction, namely node attributes (2K+A), clustering (both
average clustering, 2.25K, and degree-dependent clustering,
2.5K) and number of connected components (2K+CC). We
also extend the 2K framework, for the first time, to directed
graphs. We define two notions of degree correlation in directed
2K graphs: directed 2K (D2K) and its special case D2.1K.
D2K includes the notion of directed degree sequence (DDS)
and maps directed graphs to bipartite undirected graphs to also
express degree-correlation via a joint degree-attribute matrix
(JDAM) for the bipartite graph. This problem definition lends
itself naturally to techniques we previously developed for
undirected 2K [10], which we exploit to develop (i) necessary
and sufficient realizability conditions and (ii) an efficient
algorithm that constructs graph realizations with the exact
target D2K.

The outline of the paper is as follows. Section II summarizes
related work and defines the problem of 2K+ graph con-
struction; Section II-D provides an overview of our contribu-
tions. Section III defines and solves the basic 2K-construction
problem, extends it to the 2K+ framework for undirected
graphs, and provides a comparison to state-of-the-art methods
when targeting several real-world undirected graphs. Section
IV defines the Directed 2K problem (D2K and its special
case D2.1K); it provides realizability conditions for D2K,
an efficient algorithm for constructing such realizations, and
evaluation targeting real-world directed graphs. Section V

concludes the paper. Additional results (proofs and simulation
results) are deferred to the Appendices, available as Supple-
mental Materials.

II. OUR WORK IN PERSPECTIVE
A. Problem Statement

When constructing a synthetic graph that resembles a real
graph GG, we have to specify several aspects of the problem.

First, we have to choose the properties of G that should be
preserved: this is in itself a challenging research question. We
adopt the systematic framework of dK-series from Mahadevan
et al. [5], which was introduced to characterize the properties
of a graph using a series of probability distributions specifying
all degree correlations within d-sized, simple, and connected
subgraphs of a given graph G. In this framework, higher values
of d capture progressively more properties of G at the cost of
more complex representation of the probability distribution.
The dK-series exhibit two desired properties: inclusion (a
dK distribution includes all properties defined by any d’'K
distribution, Vd’ < d and convergence (nK, where n = |V|
specifies the entire graph, within isomorphism). !

Second, we have to define in what sense the synthetic graph
should resemble the original one. In this paper, we produce
simple graphs that exhibit the target properties exactly. This is
different from the stochastic approach presented by [14] (target
properties are achieved in expectation) or the configuration
model in [15] (graphs could be multigraphs as well).

Depending on how probabilistic construction is performed,
its realizations may be associated with JDMs that are far from
the target, which may or may not be desirable in practice.
While our focus in this paper is on exact construction, we
note that probabilistic and deterministic construction are com-
plementary approaches in a broader graph construction toolkit
and can be used together. Exact construction can facilitate
probabilistic construction by, for example, first simulating
JDMs from a target distribution and then construction graphs
satisfying those simulated JDMs (if necessary, filtering out
unfeasible JDMs as a form of rejection sampling). Many
approaches to probabilistic simulation of complex network
distributions (e.g., those based on Markov chain Monte Carlo
or related methods) are fairly expensive, and exact construction
may be faster (provably on the order of the number of edges)
for large graphs.

Third, we have to specify what realizations with the target
properties can be achieved and how: at least one (if such ex-
ists), all possible realizations (and the corresponding sampling
method), a subset of realizations, etc.

A dK-construction problem takes as input the target
properties” (i.e., the dK-series and potentially additional prop-
erties), and addresses the three following subproblems.

'A study of how well dK-series match real-world graphs was conducted
by Orsini ef al. in [6]. Six real-world undirected graphs were considered and
compared to synthetic graphs produced by dK-series in terms of a range of
graph properties (from local to global, targeted and non-targeted). The paper
[6] demonstrated the convergence of dK-series for these graphs and properties,
for d < 2.5, in the overwhelming majority of the cases.

2We use © to denote the target properties, that the constructed graph should
have; absence of © denotes the actual values for the constructed, or partially
constructed, graph.

« Realizability: Provide necessary and sufficient conditions
such that there exist simple graphs with these target
properties.

o Construction: Design an algorithm that generates at least
one such graph realization.

o Space of realizations: Characterize the space of all graph
realizations with these target properties and provide ways
to sample from them.

In the next subsections, we discuss in detail the dK-series
framework [5] and summarize prior work.

B. Prior Work on Undirected Graph Construction

Consider an undirected graph G = (V,E), with n =
|[V| nodes and m = |E| edges. Let deg(v) be the degree of
node v. Let Vi be the set of nodes that have degree k, also
referred to as degree group k.

0K Construction. 0K describes graphs with a prescribed
number of nodes and edges. This notion corresponds to simple
Erd6s-Rényi (ER) graphs with fixed number of edges.

1K Construction. In an undirected graph G, a node v has
degree deg(v), Dy = |Vi| is the number of nodes of degree
k,k=1,...,dnaz, Where d,q, is the maximum degree in the
graph. The degree sequence is simply:

DS = {deg(v1),deg(v2), ..., deg(vv)) } (1)

In the dK-series terminology, the degree sequence specifies
1K. Degree sequences have been studied since the 1950s, thus
we only focus on the most relevant results. The realizability
conditions for degree sequences were given by the Erdds-
Gallai theorem [1], and first algorithm to produce a single
realization by Havel-Hakimi [2], [3]. The space of simple
graph realizations of 1K distributions is connected over double
edge swaps preserving degrees [4]. More recently, importance
sampling algorithms were proposed in Blitzstein et al. [16]
and Genio et al. [17].

2K Construction. A Joint Degree Matrix (JDM) is given
by the number of edges between nodes of degree k and [3:

IJDM(k,1) = > Y Lwuwen) (2)

veEVE weV)

Degree assortativity is a scalar that is often used to summarize
JDM. A given 2K (JDM) also fixes 1K (the degree vector Dy):

1
Dy = Vel = 7 > 1oM(k,1) 3)
=1

as well as the number of edges m = |E/|, and the number of
nodes n = |V in the graph, thus OK.

Realizability conditions for undirected 2K were provided by
Amanatidis et al. [8] [18]. Algorithms for generating realiza-
tions of a target JDM were provided in Czabarka et al. [9],
Gjoka et al. [10] and Stanton and Pinar [19]. The algorithms
presented in [18] and [19] are designed to produce restricted
realizations that exhibit the Balanced Degree Invariant (BDI)
property, which evenly spreads edges between degree groups.

31n case of k = [, this notation returns twice the number of edges within
degree group k, resulting in minor differences in notation from related work.

In [9] and [10], the algorithms have non-zero probability to
produce any realization of a 2K distribution. Bassler ez al. [20]
introduced an importance sampling algorithm. We provide an
overview of the relation of these algorithms in Section III-A3.
W.r.t. sampling, the space of 2K-graphs with a realizable
JDM was shown to be closed under JDM-preserving double
edge swaps [9], [18], # and can be used to generate approx-
imate probability samples for 2K. However, fast mixing has
not been proved for 1K or 2K, apart from special classes of
realizations [21] [22]. We further discuss these types of swaps
in Section III in relation to graph properties like number of
connected components and clustering.
dK, d > 2 Construction. While algorithms of known
time complexity exist for d < 2, Monte Carlo Markov Chain
(MCMC) approaches are typically used for d > 2. Several
attempts were made to find polynomial time algorithms to
produce 3K graphs [5] or 2K realizations with prescribed
(degree-dependent) clustering coefficient [23], [10] and [6],
but a member of our team and collaborators recently proved
that checking realizability of these inputs is NP-Complete [11].
Annotated graph construction was proposed by Dimitropou-
los et al. in [24] that considered degree correlations, however
the proposed construction method will generate graphs with
self-loops or multi-edges initially. An additional step removes
these extra edges to make the graph simple and finally the
largest connected component of the graph is returned.
Partition Adjacency Matrix problem (PAM) is another re-
laxation of JDM construction by Erd8s et al. [7], where
the number of edges are defined over a partition of nodes
(not necessarily forming degree groups) and each part of
the partition is associated with a degree sequence. In [7], a
construction algorithm was shown to solve the problem for
any bipartition and other special cases. However, there is no
general solution available for PAM and it is believed that even
the realizability question is NP-Complete.

C. Prior Work on Directed Graph Construction

We extend the taxonomy of dK-series, from undirected
graphs to also describe properties of directed graphs.

Directed OK. There is a simple extension of ER graphs
to generate directed graphs as well, which we use in our
evaluation. In addition, we consider the UMAN model [25],
which captures the number of mutual, asymmetric, and null
dyads in a graph: UMAN can be thought of as OK with fixed
numbers of mutual and unreciprocated edges.

Directed 1K. In a directed graph, a node v has both in and
out degree (di™,d°"!) and the directed degree sequence can

v Y

be expressed as follows.

DDS = {(d"*,d>*"),v € V'} “)

v v

It is well known from Gale’s work [12], that any directed
graph can be mapped 1-1 to an undirected bipartite graph,

4In [18] an induction proof is provided that shows swaps to reduce
the symmetric difference between any two realizations until the difference
disappears, a simple example is shown in Fig. 4. In [9] a different approach
is shown where a swap sequence is given to reach a BDI realization and
later to reduce the problem to a union of unipartite (1K) and bipartite degree
sequence problems which have known solutions.

degree-attribute group
bipartition of degree groups
Bipartite JDAM

unique
degree
groups

Bipartite Degree
Sequence

unipartite

non-chords non-chords

Directed Erd&s-Rényi
(GNM) = DOK

Directed dK-series

Directed Degree
Sequence = D1K

Erd&s-Rényi Degree _
(GNM) = 0K Sequence = 1K Di = 2K
Undirected dK-series
1K+1CC

Fig. 1. Overview of problems for both directed and undirected graph
construction. Our contributions are the modules highlighted in gray.

where each node v of the directed graph is split in two nodes
Vin and vy, and the undirected edges across the two (in
and out) partitions of the bipartite graph correspond to the
directed edges in the directed graph. A self loop (v,v) in
the directed graph corresponds to a “non-chord” (v, Uoyt) in
the bipartite graph. We further discuss this transformation and
provide examples in Section IV.

Construction algorithms are known for a bipartite degree
sequence with [12], or without non-chords, and therefore for
the corresponding directed graphs with or without [13] self-
loops, respectively. More recently, an importance sampling
algorithm was provided for DIK in [26].

D. Our Contributions: The 2K+ Framework

Our 2K+ framework not only constructs graphs with an
exact target JDM but also targets additional properties. This
paper unifies and extends a number of our previously discon-
nected results, which have partially appeared in conferences
and workshops, on construction of undirected (2K [23] [27],
2.25K [10], 2.5K [23], 2K+CC [28]) as well as directed graphs
(D2K, D2.1K [29]). Figure 1 depicts an overview of the
problem space including past work and our contributions.

2K Construction. JDM realizations have been studied
independently and in parallel by several groups. The problem
was spearheaded by Amanatidis et al. first in an unpublished
manuscript in 2008 (on the realizability conditions), and in
a more recent arxiv in 2015 [18] (on construction algorithms
for balanced and single connected component realizations). It
was followed by Stanton and Pinar in 2012 [19] also targeting
BDI realizations and a proof for connected space that was
found to have flaws. Around the same time, construction
algorithms that could also produce non-balanced realizations
were developed by two other groups: Czabarka et al. [9] in
2015, and by Gjoka ef al. in 2013 [23] and 2015 [10] (ours).
The common idea behind all construction algorithms is to add
one edge at the time so as to not exceed node degrees or
JDM; algorithms vary on if/how they violate any of these two
properties and on when/how to correct it using local rewiring;
which is always possible for realizable JDMs. Details on the
algorithm and comparison can be found in Section III-A and
III-A3, respectively. In addition to independently developing
one of the 2K algorithms in [10], [23], our contribution in this
part lies in the particular order in which we add and rewire

edges, which is necessary for being able to target additional
properties and enable a framework beyond just 2K.

A note on use cases: The 2K distribution captures properties
such as differential mixing by degree, which can be important
for modeling phenomena such as diffusion. In particular, in
a degree-conditioned random graph, high-degree nodes are
proportionally more likely to be adjacent to each other than
to low-degree nodes; this produces a core in the network, and
high connectivity among hubs (particularly where the degree
distribution is highly skewed), leading to rapid hub-based
diffusion. In real networks, however, one may see other mixing
patterns involving, for example, higher or lower levels of
assortative degree mixing, or entirely different patterns (e.g., a
tendency for degree-1 nodes to mix with each other, producing
large numbers of isolated dyads). Matching the 2K distribution
ensures that these properties are accurately represented. It is
interesting to note that 2K can match these properties. while
1K cannot, while having the same linear complexity O(|E|).

Clustering: 2.25K and 2.5K. 2K (JDM) in itself does not
capture clustering, which is an essential property of several
real-world graphs such as online social networks. 3K captures
a very strong notion of clustering, whose construction we
recently showed to be NP-hard [11]. Our main motivation
behind the 2K+ construction work was to efficiently generate
graphs with a target JDM and some notion of clustering and
we targeted two such notions: average clustering ¢ and average
degree-dependent clustering ¢(k), defined as follows.

The clustering coefficient ¢, of a node v is defined as
the ratio of the number of triangles 7;, attached to node v
divided by the maximum possible number of such triangles.
The average clustering coefficient (c) averages c, over all
nodes V. The average degree-dependent clustering coefficient
¢(k) averages over degree groups. In summary:

T, _ 1 _ 1
7(deg2(v)) c= ﬁzv:% c(k) = W Z Cy-

veV)

(&)

Cy =

In the 2.25K problem, we develop a construction approach
to target JDM and ¢ [10]. In the 2.5K problem, we develop
a hybrid construction and MCMC approach to target JDM
and ¢(k) [10], [23], efficiently. The heuristic nature of our
approaches is justified by the hardness of 2K construction with
any notion of clustering [11].

A note on use cases: 2.25K and 2.5K distributions capture
clustering, which is also important for diffusion: it is well
known that clusters are the obstacle to information cascades
over networks. Online social networks exhibit high clustering
(e.g., compared to random graphs) and this is one of the main
motivations for this work: producing synthetic graphs that
resemble real, large online social network graphs in reasonable
time. As we will see in the evaluation results, prior MCMC-
based approaches targeting clustering on large online social
networks do not converge in weeks, while our 2.25K and 2.5K
construction converged on the order of minutes.

Number of Connected Components: 2K+CC. A single
connected component (which we refer to as 1CC) can be
targeted in addition to the degree sequence [4], [30], or in
addition to a target JDM [18]. Our result builds on and extends

Initgation
¢ B
¢ ©
o O

0/1 0/1

E 0/1 0/1

E 0/10/1 0/4
n0/1 0/1 0/4 0/2

Iteration 1

S

¢/®

(ib)
[|1 [2 3 [a |
0/1 1/1
E 0/1 0/1
HO/I 0/1 o/a
ﬂ 1/10/1 0/4 0/2

Iteration 5
2a

3a 4qa

4b

la

[|1 f2 3 [a |
n 0/1 1/1
H 0/1 1/1

H 0/10/1 2/4
ﬂ 1/11/1 2/4 0/2

Iteration 9

[1]2 3 [a |
n 1/1 11
E 1/1 1/1

H /111 2/4
ﬂ 1/11/1 2/4 2/2

JDM [JDM®
Free stub s

JDM / J]DM® JDM /JDM© JDM / JDM®

Used stub

Fig. 2. Example of running 2K_Simple. The algorithm starts from nodes
with only free stubs (left). In each iteration it creates one edge by connecting
2 free stubs (between two nodes whose degree pair has not reached the target
JDM yet) and it increases the corresponding entries in JDM by one. At the
end (right) the graph is complete and the JDM reaches the target.

Amanatidis et al. [18] to target minimum number of connected
components for a given JDM, and we show that the space of
those realizations is connected under JDM-preserving double-
edge swaps; a one-page abstract is at [28] and the extended
version and proofs are provided in this paper.

Node Attributes: 2K+A. In order to capture attributes in
addition to structural properties, we were the first to define
and target the Joint Degree-Attribute Matrix (JDAM), which
captures correlation between node degrees and attributes. We
show that our 2K construction algorithms gracefully extends to
JDAM construction [10]. This is useful not only for incorporat-
ing attributes into the model, but also for imposing additional
structure by properly assigning the attributes in JDAM, such
as bipartite JDAMs and community membership.

Directed Graphs: D2K, D2.1K. We were the first to
define and target directed degree correlations in [29]. In our
main approach, D2K, we represent directed graphs as bipartite
graphs with non-chords and we target the bipartite JDAM to
construct simple directed graphs. In our second approach, we
further restrict the notion of directed degree correlation to
D2.1K that captures in-, out-degree correlations for a partition
of nodes into the same degree groups (nodes with the same in
and out degree); we show that D2.1K can be solved targeting
JDAM with a more granular partitioning of attributes. In
addition to the above contributions, which first appeared in
[29], in this paper we also (i) provide a heuristic to target the
number of mutual edges in a directed graph and (ii) we show
that D2K and D2.1K always have BDI realizations, similarly
to the undirected case of 2K.

III. UNDIRECTED GRAPHS
A. 2K Construction: Target JDM

In this section, the input is the target JDM®, and the goal
is to create a (at least one) simple undirected graph with N
nodes that exhibits that exact JDM®, if it is realizable.

1) Realizability: Not every target JDM is realizable (or
“graphical”): there does not always exist at least one simple

graph with this exact property. Necessary and sufficient con-
ditions for a target JDM to be realizable, have been developed
independently [9], [10], [18], [19] and are the following:

I Vk, JDM (k,k) <|Vi|- (|Vk] = 1)
I vk : |Vi| =3, %[(“) and it is an integer.

These conditions are necessary and describe intuitive con-
ditions for inputs to be realizable. Violating the first condition
would necessarily result in a multi-graph or graphs with self-
loops, since it describes the number of edges contained in
a complete graph for a degree group. Similarly the second
condition describes a complete bipartite graph between a pair
of degree groups. The third condition ensures that size of
degree groups are integers and gives the number of nodes with
certain degree. Sufficiency of these conditions are shown by
a constructive proof of our algorithm.

2) Algorithm: 2K_Simple receives a target JDM® as
input and creates a simple undirected graph with JDM®. It
is summarized next and is illustrated in the example of Fig. 2.

Algorithm 1: 2K_Simple
Input: JDM®
Initialize:
a: Create |V/| nodes; each v € V has deg(v) free stubs
b: Set JDM (k,1) =0 for every (k,1) € JDM®
Add Edges:
1: for (k,1) € JDM®(k,1)
2: while JDM(k,1) < JDM® (k,1)
3: Pick any nodes v € Vj, and w € V]
s.t. (v, w) is not an existing edge

4. if v does not have free stubs:

5: v’: node in V}, with free stubs
6: NeighborSwitch(v,v")

7 if w does not have free stubs:

8: w’: node in V; with free stubs
9: NeighborSwitch(w,w’)

10: add edge between (v, w)

11: JDM (k,l)++ ; JDM (1, k)++

Output: simple undirected graph with JDM = JDM®

The initialization phase is depicted in the leftmost column of
Fig. 2. We create |V| = n nodes, labeled by their degree; note
that |[V| and DY can be found from JDM®(k,). Following
the configuration model approach, we assign k free stubs to
every node v € Vj, according to their degree. Stubs are the
“half” edges shown in the top-left part of Fig. 2, originally
free, i.e., not connected to any other nodes. We also initialize
all entries of JDM (k,!) to zero.

Then the algorithm proceeds in iterations by adding one
edge at a time until J DM matches JDM®. More specifically,
we pick two nodes v and w from degree groups Vi and V]
respectively, s.t. JDM (k, 1) has not reached its target yet (i.e.,
JDM (k,l) < JDM®(k,1) in line 2 of Algorithm 1) and
(v, w) is not an edge. Then the algorithm connects two of their
stubs to create an edge. Furthermore, the algorithm should be
able to add an edge even if one or both nodes do not have
free stubs. In that case, Lemma 3 guarantees that we will

always be able to perform edge rewiring, which we refer to
as NeighborSwitch, so as to free stubs for v and/or w.

More specifically, a NeighborSwitch for a given node w
frees a stub for node w and preserves the current JDM
without creating multi-edges or self-loops. It does so, if also
given a node w’ with the same degree as w and a free stub.
First, we find a neighbor ¢ of w such that ¢ is not a neighbor of
w’, then removing edge (w,t) and adding edge (w’,t). The
following pseudocode summarizes a NeighborSwitch, which
is also illustrated in Fig. 3.

NeighborSwitch(node w,w’):
l: find ¢: neighbor of w and not neighbor of w’

2: remove edge (w,t)
3: add edge (w',t)

Correctness. 2K_Simple terminates and constructs a sim-
ple undirected graph with the exact JDM®.

Proof. In each iteration, 2K_Simple adds exactly one edge
making sure that JDM values never exceed target JDM®
value: ie, JDM(k,1) < JDM®(k,I). Starting from an
empty graph, the algorithm adds | F’| edges and then terminates
with JDM = JDM®. Lemma 1 shows that the algorithm
will not get stuck, i.e., if we have not reached the target, it is
possible to find v € Vi, w € V| nodes where an edge can be
added. There are three cases depending on whether v, w have
free stubs or not:

Case 1. Add a new edge between v, w nodes w/free stubs,
no local rewiring needed.

Case 2. Add a new edge between a node v w/out free stubs
and a node w w/free stubs. Lemma 2 shows that there is v' €
Vi wifree stubs and Lemma 3 shows that NeighborSwitch can
be applied for v, v’ and it will free up a stub for v. Then (v, w)
edge can be added without further rewiring.

We have to consider whether NeighborSwitch operation can
add (v,w) edge if k¥ = | and w = v’ such that it remains
possible to add it after the switch. Node ¢ used during the
switch is different from w, thus the edge added during the
switch is different from (v, w).

Case 3. Add a new edge between v, w nodes w/out free
stubs. Similar to Case 2. application of Lemma 2 gives
v € Vi and w' € V| wifree stubs for v, w respectively.
NeighborSwitches can be then applied to v, v’ and w, w’. The
resulting free stubs for v, w can be used to add (v, w).

Subsequent applications of NeighborSwitches will not add
(v,w) even if kK = [, because the first switch clearly uses
v’ # w and the second can be handled as in Case 2. O

Lemma 1. If JDM (k,l) < JDM®(k,l), then an edge can
be added between Vi, and V; .

Proof. This follows from realizability conditions [I] and [II].
Let us assume that it is not possible to add a new edge between
nodes in V}, and V;. This implies that nodes in V), and V; and
current edges build a complete bipartite graph (or complete
graph if k =[):

[Vi| - Vil
Vil - (V| = 1),

if k£ 1

JDM (k,1) = JDMpmaz(k,1) = { AN

O

O o

00, 6"

o

Case 1 Case 2
Add edge v, w| NeighborSwitch(w, w’) NeighborSwitch(w, w’)
Add edge v, w NeighborSwitch(v, v’)

Add edge v, w

Fig. 3. All possible cases of adding an edge (v,w) between node v (of
degree k) and node w (of degree [). Case 1. shows the simplest case when
both nodes v and w have free stubs and no neighbor switch is necessary to add
an edge between them. In Case 2., w has no free stubs and a neighbor switch
is needed. (Note: t is the node we use to perform the switch: ¢ is neighbor
of w but not a neighbor of w’. Lemma 3 guarantees the existence of at least
one such neighbor; if multiple options exist, we pick one at random.) In Case
3., both v and w have no free stubs and we need to perform two neighbor
switches. Blue color nodes without free stubs and edges that resulted from
connecting two stubs. Grey color indicates nodes that have free stubs and
stubs that are not used yet.

Since JDM® for a realizable JDM® (k1) <
JDM 0z (K, 1), V(k,l), which leads to a contradiction
with JDM (k1) < JDM®(k,1). O

Lemma 2. If JDM(k,l) < JDM®(k,1), there is at least
one node xj € Vi, with free stubs of degree k and one node
x; € Vi with free stubs.

Proof . Let us assume that there is no node of degree k with
free stubs. This means that every node = € Vj has k connected
stubs and zero free stubs. This happens in two cases:

o ¥Ym, JDM(k,m) = JDM®(k,m), which contradicts
JDM (k1) < JDM®(k,1).

e I3m : JDM(k,m) > JDM®(k,m), which contra-
dicts the algorithm’s invariant that V(k,1), JDM (k,1) <
JDM® (k,1) (lines 2 and 9 of 2K_Simple algorithm).

This is a contradiction. So does assuming that no z; of degree
l, k # 1 has free stubs. [J

Lemma 3. NeighborSwitch is possible to execute and it is
JDM preserving if w,w' € Vj, and deg(w') < deg(w).

Proof. Since deg(w’) < deg(w), there exists a node ¢ (¢ #
w’,t € V}, where k could be equal to [), which is a neighbor of
w but not a neighbor of w’. Therefore, it is possible to remove
edge (w,t) and add edge (w’,t) without creating multi-edges
or self-loops. Since a NeighborSwitch removes exactly one
edge (w,t) and adds exactly one edge (w’,t), the number of
edges between nodes of degree k (i.e., w, w’ € V}) and nodes
of degree [(i.e., t € V) will remain the same, before and after
the switch, therefore the value of JDM (k, 1) will not change.
The NeighborSwitch is JDM preserving, and no updates to
JDM are needed. [

Lemma 3 guarantees that, if construction has not terminated,
there will always be at least one suitable ¢ (neighbor of
w but not neighbor of w’) to perform the NeighborSwitch.
In case there are multiple such neighbors ¢, picking any
one of those candidates to perform the NeighborSwitch will
work, since they all preserve the JDM. Although the choice
of eligible neighbor, ¢, to perform the NeighborSwitch does

not affect the correctness of the algorithm, it may affect the
exact (not asymptotic) running time and the properties of the
resulting realization. In our implementation, we purposely pick
one random such neighbor, to avoid introducing bias in the
structure of realizations.

Running Time. The running time of 2K_Simple is O(|E|-
dpmaz), i-e., linear in the number of edges.

Proof. In each iteration of the while loop, one edge is always
added, until we add all |E| edges. However, we have to
consider how much time it takes to pick nodes (v,w) and
the cost of NeighborSwitch operations.

Naively chosen node pairs would become an issue for dense
graphs, since there could be NeighborSwitches that remove
previously added edges or add edges between the two degree
groups. A simple solution is to keep track of JDM®(k, 1) —
JDM (k,l) many node pairs where edges can be added in
a set P. For every pair of k,I[, it is possible to initialize P
by passing through at most JDM®(k,1) node pairs. A new
(v, w) node pair can simply be chosen as a (random) element
from P. If a neighbor switch for v € Vj (and similarly to
w), rewires a neighbor ¢t € V}, then P = P\ (v',t) U (v,?)
maintains available node pairs in P. Note: (v’, t) might not be
in P. This ensures that |P| > JDM®(k,l) — JDAM (k,1).
These simple set operations can be done in constant time, and
building P takes O(E + V') time over all partition class pairs.
Finally we remove (v, w) from P once the edge is added.

It takes O(dqz) time to choose a neighbor, ¢, of a node
without free stubs, v, for NeighborSwitch, because the sets of
neighbors can be at most |d,,..| and set difference takes linear
time in the size of sets. Keeping track of nodes with free stubs
allows us to pick v’ for NeighborSwitch in constant time. In
the worst case, there are at most two NeighborSwitches per
new edge, hence the running time is O(|E| - dmax)- O

A tighter upper bound can be obtained by counting the
running time of a NeighborSwitches for each degree group. We
can express the number of edges E as a sum of stubs attached
over nodes in each degree group k: |E| =Y, D -k/2 . In
the worst case that each of these stubs will need a neighbor
switch during an edge addition, the running time would be
Oy Dy - k- (k—1)/2) = O(X, Di.(%)), which is the
number of paths of length two in the graph.

Space complexity. The input size proportional to the num-
ber of nonzero elements of the JDM, that is O(d?,,,). The al-
gorithm produces a graph that requires O(V + E) space, while
using temporary data structures. Therefore, 2K_Simple uses
the minimum space as it is required to store the final output
graph. The details of the space requirements are as follows.

2K_Simple requires constant look up time for nodes with
free stubs, this can be achieved by storing an array of sets,
where each set contains the nodes with free stubs for a given
degree group. The size of this data structure is initially O(V")
and decreases over the execution of the algorithm.

As discussed in the proof, 2K_Simple also maintains pairs
of nodes (set P) for candidates to add edges. The size of
P is O(JDM(k,1)) for a given k,l degree group pair and
O(_JDM) = O(FE) over all iterations of the algorithm.
(This is easiest to see in the example of targeting k-regular

graphs, where P stores a set of |F| candidate pairs initially,
and we can keep track of nodes with free stubs in a single set
of size O(V).)

3) Relation to related work: 2K_Simple adds an edge
at a time while maintaining the following invariant for every
k,l : JDAM (k,1) < JDM®(k,l) and Vv € Vj, : deg(v) <
k. This idea was also presented independently in [18]. Another
approach, followed by [18], [19] and [9], is to add all edges
between Vj, V; according to JDM® (k, 1) without considering
degrees. This could create nodes with higher degree than their
assigned degree group requires, which can then be resolved
by using NeighborSwitch operations. Special realizations with
the BDI property can also be constructed using these ideas:
[18] adds further restriction to the first approach such that
at every edge addition the BDI property is maintained, while
[19] provides an algorithm using the second approach, where
no NeighborSwitch operations are required.

The common idea behind all 2K construction algorithms
is to add one edge at the time so as to not exceed node
degrees or JDM; algorithms vary on if/how they violate any
of these two properties and on when/how to correct it using
local rewiring (NeighborSwitch in our terminology); which is
always possible for realizable JDMs. Please see Section II-D
for a timeline. The particular order used in which 2K_Simple
adds and rewires edges is essential for being able to target
additional properties, during construction, thus enabling a
framework beyond just 2K.

2K_Simple’s run time complexity is comparable to other
proposed 2K algorithms. Interestingly, it is even comparable
to 1K construction algorithms that produce any 1K realization
with non-zero probability [16], [17]. Indeed, O|E| is the
minimum required to construct a graph with |E| edges.

4) Space of Realizations: The order in which 2K_Simple
adds edges is unspecified. The algorithm can produce any real-
ization of a realizable JDM, with a non-zero probability. Con-
sidering all possible edge permutations as the order in which to
add the edges, the ones where no neighbor switch is required
correspond to all the possible realizations. Unfortunately, the
remaining orderings are difficult to quantify, thus the current
algorithm cannot sample uniformly from all realizations with a
target JDM during construction. An experimental validation is
shown in Appendix B-A in comparison with BDI realizations
and the configuration model.

Fortunately, once one realization is constructed (using
2K_Simple), it is possible to sample from the space of
all realizations, using edge-rewiring. In particular, it has been
shown that JDM realizations are connected via 2K-preserving
double-edge swaps [9], [18]. This method is typically used by
MCMC approaches that transform one realization to another
by rewiring edges so as to preserve target properties.

In the next subsections, we exploit the flexibility of
2K_Simple and we extend it to target additional properties,
in addition to JDM®. In Section III-B we control (approx-
imately) the average clustering by controlling the order in
which edges are added. In Section III-C we impose (exactly)
node attributes by exploiting the flexibility in the number of
degree groups with the same assigned degree. In Section III-D

G G’

Fig. 4. A double-edge swap is a rewiring of edges (a,b), (c.d) to (a,d), (b,c)
where a,b,c,d are four distinct nodes (to avoid self-loops) and (a,d), (b,c) are
not present before rewiring (to avoid multi-edges). If deg(a) = deg(c) then the
swap obviously preserves the JDM of the graph. It is referred to as JDM-
preserving double-edge swap and it is used in MCMC to transform graph G
to other realizations G’ with the same JDM, while targeting other properties.

we consider the space of realizations with a target number of
connected components.

B. Target JDM and Clustering

Recently, a member of our group and collaborators proved
that the realizability of JDM and a fixed number of triangles
is NP-Complete [11]. This motivated us to design efficient
heuristics that target different notions of clustering (namely
2.25K when average clustering ¢®, is targeted and 2.5K when
degree-dependent clustering &© (k), is targeted).

MCMC Approach. In the original dK-series paper [5], 2K-
preserving 3K-targeting was attempted via the classic JDM-
preserving double edge swap as follows. Starting from a JDM
realization, randomly select edges (a,b) and (c,d) such that
deg(a) = deg(c), as in Fig. 4; perform a double-edge swap iff
it brings the graph closer to the target 3K (according to a well-
defined distance metric), accept the rewiring. Unfortunately,
this happens with a very small probability and the naive
MCMC approach was very slow in practice, taking weeks or
months to produce a single realization for large graphs.

We improved the 2K-preserving clustering-targeting MCMC
by carefully selecting candidate edges to swap so as to control
the number of triangles: select edges with low number of
shared partners to create triangles, select random edges to
destroy triangles. The rationale is that it is easier to destroy
than create triangles. Although this reduced the running from
weeks to days we still faced scalability problems.

Construction Approach. We modify 2K_Simple so as to
control the order in which edges are added and create the target
clustering during the 2K construction, not with MCMC after
that. Let E’ be any permutation (order) of possible node pairs
{v,w}. We follow the order in E’ when we consider adding
edges in Algorithm 1, line 3: if two node pairs £, = (v;, w;)
and E} = (v;,w;) are s.t. i < j, then edge (v;,w;) will be
considered for addition (line 5 in 2K+S) before (v;,w;). The
key question is: what is the right order E’ of adding edges so
as to control clustering?

Figure 5 depicts our approach. We assign every node v € V'
to a coordinate 7, randomly selected from a one-dimensional
coordinate system (0, 1). We define the distance of v and w as
dist(v,w) = min(|r, —ryl|, 1 — |ry — 7w|). If we add edges
in increasing distance, we connect nodes near each other, thus
creating many triangles among nearby nodes in the coordinate
system (as on the right side of the figure). If we add edges in
random order, we create very few triangles (as shown on the
left side of the figure). If we control the fraction of edges that

0 triangles

Target JDM
o 2]3]
- o
El: -

2 triangles

Add edges between
random pair of nodes>
low clustering

add edges in increasing distance

nodes placed on a circle,
“high clustering

connect according to their distance

Fig. 5. Approach for targeting clustering during 2K construction. Nodes are
assigned random coordinates on a circle (middle). 2K_Simple runs with
the target JDM, but we control the order in which to add edges. If we add
edges between node pairs in increasing distance on the circle, then we tend to
create many triangles locally (right). If we add edges in random order, then
we tend to create few triangles (left). All these graphs have the same JDM
(middle top) constructed by 2K, but their clustering is controlled by the order
in which we consider adding edges in 2K_Simple.

are added in increasing distance vs. at random, we can control
the clustering.

1) 2.25K: Targeting JDM and Average Clustering: We
introduce parameter S to control the sortedness of E’. Two
node pairs FE; and E} are inverted in an order E” iff
(t < j) and dist(v;,w;) > dist(v;, w;). We define the
sortedness of a list E’ as the fraction of non-inverted node
pairs: sortedness(E’) = 1 — ““mbelrE",fli(TVlngif‘f)i/';“S‘ E ¢ 1o,1].

We experimented with the effect that an order of node pairs
E’ has on the structure of the generated graph and we found
that the sortedness S is positively correlated with the average
clustering coefficient, ¢, of the graph; see details on tuning
parameter S in Appendix C. This is intuitively expected [23]:
Values of sortedness(E’) close to 0 produce graph instances
with minimum clustering over all graph instances on average.
Values of sortedness(E’) close to 1 produce graph instances
with maximum clustering over all graph instances on average.

Algorithm. Our algorithm for achieving exactly JDM®
and approximate clustering by controlling the sortedness S of
adding nodes is summarized next. In the first stage, it attempts
to add edges using a given order E’ of all possible node pairs
defined by order(List, S). The function order(List, S) (used
in line 2 of Algorithm 2) determines the order of node pairs E’,
that will be considered for addition, so as to (approximately)
set as .S the sortedness of the input List.

Similarly to 2K_Simple, it only adds edges if the current
JDM (k,1) value does not exceed the target JDM® (k,1).
Differently than 2K_Simple, it has an additional constraint:
it adds edges between two nodes (v,w) only if there are
free stubs to connect the nodes (deg(v) < k, deg(w) < 1).
Therefore at the end of the first stage, despite considering
all possible node pairs, there might be some nodes with free
stubs, since we do not allow multi-edges or self-loops. In Stage
2, we use algorithm 2K_Simple, starting from the partially
built graph at the end of Stage 1: we add edges between any
remaining nodes with free stubs and complete the graph. It
follows directly from the properties of 2K_Simple, that this
will produce the exact JDM®.

Running Time. The time complexity of 2K+S is similar to

Algorithm 2: 2K+S
Input: JDM®, S
Stage 1:
. E={}
2: E' = order({(v,w) : Yv,w € V},sortedness = S)
3: forall {v,w} € E' do
4: ve Vi, weV
5. if IDM(k,1) < IDM®(k, 1) and
deg(v) <k and deg(w) <! do
6: E + FEU{v,w}
7: JDM(k,l)++ ; JDM (1, k)++
Stage 2:
8:if > IDM(k, 1) <> IDM®(k,1) do
9: Finish graph construction using 2K_Simple

(a) (b)

[FET] (=]
B 2 Blo
B+ Bl

[2 i

Fig. 6. Example of two different graphs, (a) and (b), with the same Joint
Degree Matrix (JDM) and different Joint occurrence of Attributes Matrix
(JAM), thus different JDAMs. We assign the color black to nodes with the
first attribute and blue to nodes with the second attribute.

2K_Simple for adding edges (i.e., O(|E| - dmaz)), plus the
time for the function order(List, S). If the latter is properly
implemented, the running time remains linear in the number
of edges; see Appendix C for details.

Space Complexity. Naive implementation of 2K+S would
require to generate all possible edges taking O(|V'|?) space.
An improved implementation only adds O(|E|) edges which
reduces the space complexity to the overall O(|V| + |E]) as
before; see Appendix C for details.

2) 2.5K: Target JDM® and Degree-Dependent Clustering:
Targeting ¢® (k) is even more challenging than targeting .
Our intuition from MCMC was that it is difficult to find a
double edge swap that creates triangles while it is easier to
destroy triangles. Therefore, we propose to (1) create a 2K
realization with many triangles (such as a 2K+S with S = 1)
and (2) use the improved MCMC described above to destroy
triangles. This indeed worked well in practice in terms of
targeting ¢© (k) and running time; see Section III-E.

C. 2K+A: Targeting JDM and Node Attributes

JDM vs. JAM. JDM only describes correlations between
the degrees of connected nodes. However, in many contexts,
capturing correlations of node attributes in the network model
better characterizes the graph [24], [31], [32]. For example,
in social networks, the similarity of attributes between two
nodes often affects the creation of an edge between them.
We assume that there is a set of categorical attributes with p
possible values. Each node v € V can be assigned to only
one categorical attribute. Let A; be the set of nodes that have
attribute ¢, for ¢+ = 1, ..., p. We can define the Joint occurrence

of Attributes Matrix (JAM) as the number of edges connecting
nodes in A; with nodes in A;.

IAM(i,§) = > > Iguwleny- (7)

vEA; wWEA;

However, JAM alone does not capture the network structure.
In Fig. 6, we show a toy example. The graphs in Fig. 6(a)
and Fig. 6(b) have the exact same JDM but different JAM.
And conversely, examples of networks with the same JAM and
different JDM can be constructed as well.

JDAM. We propose to incorporate correlations of node
attributes on top of the JDM matrix as follows. If Vj is the
set of nodes that have degree k for k = 1,...,d 4. and A;
the set of nodes that have attribute ¢, for : = 1, ..., p, then let
the degree-attribute group By, ;3 = {v|v € Vi, v € A;} be the
set of nodes that have degree k£ and attribute ¢. The number
of degree-attribute groups is at most d,,q. - p. We define the
Joint Degree and occurrence of Attributes Matrix (JDAM) as
the number of edges connecting nodes in By ;3 with nodes
in By jy for degree-attribute groups {k,i} and {l,j}.

JDAM({k7Z}v{l7]}) = Z Z 1{{v,w}€E}- 3

’UEB{kﬂj} ’U)EB“J'}

Example JDAMs are shown in Fig. 6. A JDAM is similar to
JDM, but each row now describes not only a degree k but a
degree-attribute pair {k,i}; and similarly for the columns.

It turns out that 2K_Simple can be gracefully extended to
construct a simple graph with a target JDAM® as shown in
Algorithm 3 in Appendix A. We can observe that our proofs
(and others from related work) depend on the fact that within
a degree group degrees are equal among nodes, however these
proofs do not have restrictions on how many times a degree
group appears with the same degree. We can apply and triv-
ially extend earlier results including sufficient and necessary
conditions for realizability, construction algorithms, existence
of BDI realizations, importance sampling algorithm extensions
from J DM, connectivity of space of realizations over J D AM
preserving double-edge swaps and MCMC properties.

The running time and space complexity analysis follows
2K_Simple. The only change is that the JDAM input has
a size of O((dmaz - p)?), Where a sparse representation is
better characterized by the number of non-zero JDAM en-
tries or O((number of observed node degree and attribute
combinations)?).

D. 2K+CC: Number of Connected Components

In this section, we consider the number of connected
components (CC) for a target JDM — a property which has
not been explicitly targeted or characterized in the past. An
algorithm for constructing graphs with a realizable JDM and a
single CC, if such exist, has been provided in [18]. However,
there may be JDM realizations with a different number of
connected components k, s.t. 1 < kpin < k < Epge. Our
main result on this problem is the following:

Theorem 4. The space of simple, undirected graphs with a
target JDM and no more than k®© number of CCs is connected
under a sequence of JDM-preserving double-edge swaps.

#CC
k©® A ./\

Femin A B’

Part of Graph B’

Part of Graph B

-2

Degree(x) = Degree(y)

JDM-preserving double-edge swap for
nodes x,y (red edges) to merge two CCs
of B (blue and white nodes) to reach B’

Space of JDM realizations

Fig. 7. Space of JDM realizations with up to k© CCs.

There are counterexamples that show that the above state-
ment is not true for fixed k, i.e, realizations with exactly k
CCs are not necessarily connected under double-edge swaps.
However, we show that the JDM realizations with a number
of CCs up to a maximum target number, k < k®, is connected
over double-edge swaps.

Figure 7 depicts how every pair of realizations, (A, B),
can be reached via a sequence of JDM-preserving double-
edge swaps where every intermediate realization has less than
the maximum of A and B’s number of CCs. Lemma 5 uses
double-edge swaps that merge CCs and decrease k. Therefore
both A and B can be transformed to A’, B’ with the same JDM
and the minimum number of CCs, k,,;,. Lemma 6 guarantees
that A" and B’ can also be transformed to each other via the
same types of swaps. More discussion and proofs for Lemma
5 and 6 can be found in Appendix D.

Lemma 5. There exists a JDM-preserving double-edge swap
sequence that transforms any JDM realization to a realization
with minimum number of CCs, such that there is no double-
edge swap that increases the number of CCs.

Lemma 6. The space of JDM realizations with minimum
number of CCs, kpin, is connected under JDM-preserving
double-edge swaps.

We could also target balanced (BDI) realizations of 2K+CC.
Lemma 4 and Corollary 5 from [9] show how to apply
double-edge swaps to get balanced realizations from any JDM
realization. We make the crucial observation for our results
that in Lemma 4, while choosing neighbors for double-edge
swaps, nodes have at least two options to pick from. This
is sufficient for us to show how to construct balanced and
minimum number of connected components realizations at the
same time; see Appendix F.

E. Simulations for Real-World Undirected Graphs

In this section, we perform simulations targeting properties
of real-world undirected graphs, and we evaluate the perfor-
mance of different construction algorithms in practice.’> This
is also a use-case of our work: people often need to produce
topologies that resemble graphs like the online social networks

3The algorithms were implemented in Python using NetworkX [33] and
executed on an AMD Opteron 2.4Ghz machine. A C++ implementation would
be potentially faster by a constant factor especially, if combined with a more
recent, faster CPU. We also contributed our software to NetworkX [34].
However, the focus in this section, is the comparison of different algorithms.

TABLE I

REAL-LIFE TOPOLOGIES USED FOR EVALUATION.
Datase] V] |E|| Avg Deg,| d # dorms| # years|
FB: Rice [35] 4087 184828 90.45| 0.294 10 22|
IFB: Princeton [35] 6596/ 293320 88.94 0.237 57 27
FB: UCSD [35]] 14948 443221 59.30 0.227 40 23
FB:New Orl. [36]] 63392 816884 25.77) 0.222 - -
amazon0601 [37] 403 364| 2443309 12.11] 0.42 - -
youtube-links [38] 1134 894] 2987623 5.26/ 0.081 - -

listed in Table I. The main finding of this evaluation is that
our construction algorithms can target 2K+clustering well,
and orders of magnitude faster than prior MCMC state-of-
the-art: reducing the time from days and weeks (or not even
terminating for large graphs, to minutes and tens of seconds.

1) Datasets: We evaluate all proposed algorithms in terms
of accuracy and efficiency on a variety of real-world topolo-
gies. Table I summarizes the topologies, which are divided
in two groups. Those in the first group are relatively smaller
(i.e., up to 15K nodes) Facebook university networks (Rice,
Orinceton, UCSD) that come with several annotated node
attributes. The second group consists of larger graphs (i.e.,
more than 60K nodes) without node attributes (FB: New
Orleans, amazon0601, youtube-links).

First, we compute the properties (JDM, clustering, etc) of
the original real topology (last line in each topology), then we
use different construction algorithms to target those properties
(listed on the lines above). For each topology, we con-
struct 20 realizations with different algorithms: 2K_Simple,
2K+S with two different values of the clustering param-
eter S (S = 1 and another S selected to target c),
and 2K_Simple_Attributes where node attributes are
“dorms” and “year of admission”. Table II reports the proper-
ties of the original and constructed graphs, including properties
explicitly targeted (¢ and the degree assortativity for dorms,
and year) and non-targeted ones (average shortest path length,
average closeness, number of maximal cliques), averaged over
realizations.

The last two columns report the time (in sec) to construct
the graph. The second column from the end (“Construction’)
refers to the time it takes for the construction algorithm to
terminate. The last column (“MCMC?”) refers to the additional
time that our improved MCMC would use, starting from the
realization the construction algorithm produced, to further
target degree-dependent clustering within NMAFE < 2%.

2) Properties: Here we examine whether targeting either ¢
or attributes, in addition to JDM, brings the constructed graphs
closer to the original w.r.t. other non-targeted properties as
well. For the first three small graphs, we observe that the
average shortest path and average node closeness of graphs
produced by 2K_Simple is already close to the original
graph. Thus, targeting ¢ does not match better the non-targeted
properties or the assortativity of node attributes, which stays
close to zero. However, targeting a given attribute significantly
improves ¢ and the assortativity of the second attribute (e.g.,
2K + dorms in Princeton) in addition to exactly achieving
assortativity for “Dorms”, also improves ¢ from 0.04 to 0.08
and assortativity for the attribute “Year” from 0.01 to 0.27

TABLE 11
GRAPHS ARE CONSTRUCTED TARGETING DIFFERENT PROPERTIES OF 6
DIFFERENT ORIGINAL TOPOLOGIES. GRAPH PROPERTIES ARE AVERAGED
OVER 20 RUNS. THE LAST TWO COLUMNS REPORT THE TIME (IN SEC) FOR
THE CONSTRUCTION ALGORITHMS AND FOR MCMC TO TARGET &(k).

(Topology Graph Graph properties (Constr/MCMC]
Avg Node Value [Number off Assortativity | Time| Time]
[Sh.P] Closn| Cliques| Dorms] Year] (sec) (sec)
2K Simple [0.06) 2.33| 0.43] 425K] 0.01} 0.01] 2.521 9091
2K+S=1.0 |0.53] 2.74] 0.37 11.5M| 0.01] 0.01 20 193]
2K+S=0.52/0.29 2.68| 0.38 3.1M| 0.01} 0.01 21 249
[FB Rice 2K+dorm |0.13] 2.38 0.43] 793K| 0.42] 0.09] 3.45 773
2K+year [0.09 2.36| 0.43] 500K| 0.08 0.28 3.43] 2249
original 0.29] 2.44 041 1.IM| 0.42 0.28 g -
2K Simple|0.04] 2.49 0.40 530K| 0.00, 0.01] 3.69 16K
RK+S=1.0 |0.55 2.97] 0.34 29.0M| 0.00| 0.01 29 274
2K+S=0.57/0.24 2.97 0.34 9.8M| 0.00] 0.01 27, 331
[FB Princeton2K+dorm |0.100 2.56| 0.40 751K| 0.09 0.27] 5.70, 2324
2K+year |0.08 2.59| 0.39 755K| 0.05| 0.45 5.32 2157
original |0.24 2.67| 0.3§ 1.3M| 0.09 0.45 - -
2K Simple [0.01] 2.86 0.35 438K| 0.00[0.01] 4.90 66K]
2K+S=1.0 |0.63] 3.39| 0.30 3.7M| 0.00 0.01 46/ 920
2K+S=0.61/0.23] 3.46| 0.29 5.4M] 0.00 0.01 43| 1656
[FB UCSD [2K+dorm [0.03] 2.88 0.35 526K| 0.25 0.05 8.45 30K
2K+year [0.02 2.89 0.35 476K| 0.02[036 7.52) 42K|
original 0.231 298 0.34 743K| 0.25| 0.36 - -
2K Simple [0.00, 3.89| 0.26 760K| 18.65| 524K|
2K+S=1.0 |0.58 4.46 0.23] 1.5M 79 3150
2K+S=0.74/0.30, 4.56| 0.22] 2.4M| 74 9360

[FB: New Orl. original 0.22| 4.35 0.24 1.5M| E g
2K Simple [0.00f 4.84] 0.21 2.4M| - E 53] o0l
2K+S=1.0 |0.61] 6.04] 0.17 637K| E 4 239 00
2K+S=0.73|0.42) 5.92| 0.17 1.1M] E 4 214 00
lamazon0601 |original 042 6.39 0.16 1.0M| - - E -
2K Simple [0.000 4.64] 0.22] 2.9M| - - 71 00
2K+S=0.69/|0.14 5.07| 0.18 2.4M| - 4 955 00
2K+S=1.0 |0.21] 4.82| 0.20 2.2M| g 1073] 00
lyoutube-links |original 0.08 5.34 0.19 3.3M| B E

when compared to 2K_Simple.

In the three larger graphs, targeting a higher ¢ than what
is achieved by 2K_Simple brings the average path length
and closeness significantly closer to the original graph. For
example, in the amazon0601 topology 2K_Simple achieves
an average node closeness of 0.21, whereas 2K + .S = 0.73
achieves 0.17 which is closer to the real value of 0.16. Finally,
for all graphs, the property “Number of Cliques” does not
consistently improve by targeting either ¢ or attributes.

3) Efficiency: The time needed to generate a graph using
either of our three construction algorithms is similar, which is
expected since they all run in linear time in |E|. For example,
it takes tens of seconds to generate synthetic graphs for all
Facebook topologies of Table I even when we target maximum
clustering (i.e., 2K+S = 1.0). As a baseline for comparison,
we also targeted 2K +¢ (i.e., 2.25K) with MCMC using double
edge swaps, which is the previous state-of-the-art. With naive
MCMC, it took approximately a day to generate synthetic
graphs with the target ¢ for the smallest topologies (Rice and
Princeton); while simulations for the bigger graphs did not
finish after several days.

Recall that the last column of Table II reports the time that
a 2K-preserving MCMC needs to target the degree-dependent
clustering of the original graph (2.5K), starting from the
realization constructed by our (2K or 2.25K) construction
algorithm. We observe that the time for the MCMC to target
2.5K increases as we decrease the average clustering in the
generated graphs. We also observe that the larger the graph,

Clustering Coefficient

0.7 - G
-4 2K Simple

L 08 —»— 2K+dorm
5 ¥ 2K+year
Los
& HK+5=1.00
goa -® K+5=0.57
o
£03
2
w
302 n mnn
2 N »
(] -/_.__I-] il’:‘“ ﬁ‘-

LR NS S o

004 ¢ttt

T
10t 10?
Degree

Fig. 8. Average degree-dependent clustering coefficient for the FB Princeton
graph. Figure shows ¢(k) for the original graph (for which ¢ = 0.24) and for
a realization produced by each construction method. 2K_Simple, 2K+year,
2K+dorm achieve low clustering (¢ = 0.04, 0.1, 0.08), much lower than the
original graph (¢ = 0.24). 2K + S = 0.57 matches average clustering
(¢ = 0.24) but not ¢(k). 2K + S = 1 significantly overshoots the real
¢(k) in most degree groups. Starting from the realization produced by each
construction, we can target the original ¢(k) within NMAE < 2%, in time
reported in the last column of Table IL. It turns out that constructing for highest
clustering 2K + S = 1 and then using MCMC to target ¢(k) gets there the
fastest (274sec in Table 1.)

the worse the MCMC matches the graph. For example, in
the largest examples (Amazon, Youtube graphs), our improved
MCMC did not successfully target 2.5K in these cases. One
reason behind is that the cost of local updates and number of
swaps is large for large graphs.

Finally, we observe that construction targeting maximum
average clustering (i.e., 2K + S = 1) has a faster MCMC than
2.25K construction, if the end goal is to follow up construction
with MCMC to target 2.5K. Figure 8 further elaborates on this
point by zooming in on the FB Princeton graph: the blue graph
is the real 2.5K (&(k)) of the original graph; all other curves
plot the &(k) achieved by all other construction methods. The
latter serves a starting point for the 2.5K-targeting MCMC,
at the end of which ¢(k) is within NMAE < 2% of the
target ¢(k). The yellow graph on top shows the ¢(k) at the
end of 2K + S = 1 (i.e,, maximum clustering); it turns out
that starting from there and using MCMC is the fastest (274
sec) in Table II), because it is easier to destroy rather than
create triangles with MCMC. The purple graph corresponds
to 2.25K (2K + S = 0.57), which does not match the degree-
dependent clustering compared to the original graph and takes
longer to fix with MCMC (331sec) in Table II.

4) Discussion: The benefits of our approach, compared
to prior MCMC approaches are two-fold: (i) accuracy, i.e.,
how well we match 2K (exactly), and average clustering ¢
(approximately) and (ii) construction running time. As we can
see in Table II, both approaches and MCMC can achieve close
to ¢ (column 2), if allowed to run long enough. However, as
it can be seen in the last two columns of Table II, our running
time is on the order of seconds or up to tens of seconds, while
MCMC running time varies from 100s of seconds (minutes)
up to hundreds of thousands of seconds (several weeks); in
the cases of the larger graphs (amazon, youtube), the MCMC
approach does not even converge to the target (thus oo time).
The magnitude of the reduction of running time depends on the
graph characteristics, and is amplified when the target graphs

Directed 1K

[EREE] 0:1) (2;0) (1:2) (3;2)

Directed 2.1K

Node Partition:

{a}: indeg.0, outdeg. 1 -m- 0 0 1
{b}: indeg.2, outdeg. 1 m 0 1 1
{c,d}:in deg. 1, out deg. 1 .m. g A 0
Node Partition: Directed 2K (DZK)
{a0U,bout cout douty: oyt deg, = 1 1

{ci, d"}: indeg.=1

@k indeg. =0 n 0o 2 2

GRNNCEY PR
E: oo il : :

Joint Degree-Attributes In and out degree
Matrix with attributes: correlations in a
{in degree, out degree} directed graph

Fig. 9. Defining Directed 2K, to capture degree correlations in a directed
graph. Top left, Directed 1K: Directed graph with a given degree sequence
(DDS). Bottom left, Bipartite 1K: Mapping of the previous to a Bipartite
undirected graph with a given bipartite degree sequence; non-chords in the
bipartite graph (shown in dashed line) correspond to self-loops in the directed
graph. Bottom right, Directed 2K (D2K): Joint-Degree-Attribute Matrix
(JDAM), where nodes of the bipartite graph are partitioned by their degree-
and-(in or out) attribute or equivalently the in and out degree correlations
of the directed graph. Top right: Directed 2.1K: JDM for directed graphs,
where nodes are partitioned according to their (in degree, out degree).

(i) are large (i.e., large |V|,|E]|), (ii) exhibit high clustering
(e.g., see original ¢ in Table II), and (iii) are sparse (as
indicated by their average degree in Table I).

The Facebook university graphs all have almost the same
¢ and are ordered in increasing size and sparsity in Table
I: Rice, Princeton, UCSD, New Orleans. In Table II, we
can see that the corresponding difference in running time
is in the same order, i.e., amplified with size and sparsity.
The amazon dataset is an order of magnitude larger and
sparser but has a higher target average clustering than the
Facebook networks. In this case, the MCMC never converges
(indicated by oo time in the last column of Table II), while
our algorithms still terminate on the order of minutes. The
reason is that it is highly unlikely to create triangles by chance
(MCMC or pure 2K), compared to our more structured 2K+
construction (where we create as many triangles as we can
using 2K + S = 1), then we destroy triangles using an
improved MCMC). Fig. 8 shows an example of how sortedness
was used to overshoot degree-dependent clustering before
applying MCMC. Therefore, targeting sparser graphs with
higher clustering is more challenging for the MCMC approach,
while 2K+S was significantly faster. Sparse (pairs of) degree
groups tend to have low clustering if we only consider 2K
(not 2K+S). We have not experimented with datasets where the
graph is dense and the target clustering is low (but realizable);
our intuition is that even 2K construction would achieve close
to target clustering in that case, since it tends to generate
graphs with low clustering. Finally, sparsity can affect the
running time of our algorithm in practice (asymptotically it
is still O(|E| - dynqz)) in a different way: sparse graphs might
require fewer NeighborSwitches (the most expensive operation
in our algorithm) compared to dense graphs.

IV. DIRECTED GRAPHS
A. Defining Directed 2K

Our goal in this paper is to go beyond just directed de-
gree sequence and capture directed degree correlation. One

approach would be to simply consider the degree correlations
between in and out degrees in a directed graph, as shown in
Fig. 9-bottom rightmost matrix. Alternatively it is possible to
work with the equivalent representation of a directed graph
as an undirected bipartite graph without non-chords (Fig. 9-
bottom left), and define degree correlations there. We partition
in and out nodes by their degree, essentially considering that
nodes in the bipartite graph can have an attribute that takes two
values, “in” or “out.” We can now define degree correlation
using the Joint Degree-Attribute Matrix (JDAM), as shown
on Fig. 9-bottom right. This leads to a JDAM with two
attribute values, such that Vk,l = 1,...,d,,, degrees and
i € {in,out} attribute values JDAM ({k,i},{l,i}) =0, ie.,
because the bipartite graph has no edges between two “in” or
two “out” nodes. Furthermore, the number of non-chords will
be noted as f({k,i},{l,j}), where k,l € {1,...,dmas} and
i # j € {in,out}; f can be computed by passing through
the directed degree sequence once and counting the number
of entries with in-degree k£ and out-degree [.

We note that this notion of Bipartite JDAM is a special
case of JDAM and inherits all the properties known for
JDAM. 1t allows us to get rid of the directionality of the
edges and handle a regular undirected JDAM using the 2K+A
algorithm previously defined. For D2K, the main challenge is
to show that the non-chords described by the directed degree
sequence can be avoided. In summary we define the D2K
problem as follows, and an example is shown on Fig. 9.

D2K. The input is two target properties, namely the
IDAM® ({k,i},{l,7}) with two attribute values (in and out)
and the directed degree sequence DDS®. The goal is to con-
struct a simple directed 2K-graph with these target properties
(construction) if such realizations exist (realizability).

B. Realizability and Algorithm

Recall that in our D2K definition, nodes are partitioned
into at most 2dyaz parts Vig iny, Vikouty, k = 1, ..s dmaa,
according to the distinct combinations of degrees and attributes
they exhibit and IDAM({k, 4}, {l,j}) is indexed accordingly.
For example, on Fig. 9 bottom-right, each node belongs
to one of four parts Vign {v e V:dm = 0},
V{l,out} ={veV: dou% =1}, V{l,in} ={veV: dm = 1},
Viginy = {v € V : d"™ = 2}, and the JDAM is 3x3 (by
removing rows and columns corresponding to any Vyg ;3, since
there are no edges using these parts of any partition).

1) Realizability: Necessary and sufficient conditions for
a target D2K, i.e., JDAM®({k,i},{l,7}) and DDS®, to be
realizable are the following:

I Vk,l,i: JDAM ({k,i},{l,i}) =0

II Vk,1,4,5, if JDAM({k it {7} > 0,

JDAM({k, i}, {L3}) + f({F, i} 4L 5}) < Vieay| - Vi
I Vk,i: \V{k gl = Z{Z,J} w
k appears in DDS as 1.

= number of times

These are generalizations of the conditions for an undirected
JDM, JDAM to be realizable, and they are clearly necessary.
The first condition states that every realization of the target
JDAM is bipartite, i.e., there should be no edges between
two nodes both in “in” or “out” parts. The second condition

/,

k=1,in

o

N Q

1=2, out

Case 4
NeighborSwitch(w, w’) Fails
Add edge v, w’

Case 5a
NeighborSwitch(w, w’) Fails
NeighborSwitch(v, v’) Fails
Add edge v/, w’

Fig. 10. New cases in Algorithm 4, while attempting to add (v, w) edge.

considers edges between two (“in” and “out”) parts and states
that the number of edges defined by the JDAM ({k,i},{l,j})
plus the number of non-chords (shown as f({k,i},{l,5}))
should not exceed the total number of edges possible in
a complete bipartite graph across the two parts. The last
condition ensures that the target JDAM and the target DDS
are consistent: the number of nodes with in (or out) degree
k should be the same whether computed using the JDAM
or the DDS. The conditions are shown to be sufficient via
the constructive proof of the algorithm. Necessity of these
conditions for simple graph construction are trivial.

Algorithm 4: D2K_Simple
Input: DDS®, JDAM®
Initialization:
a: Create G with nodes, partition, stubs using DDS®
b: Add non-chords to G using DDS®
Add Edges:
L: for ({k,i},{l,5}) € JDAM® ({k,i},{l,5})
2: while JDAM ({k,i},{l,j}) < JDAM® ({k,i},{l,j})
3: Pick any nodes v € Vi 53, w € Vi 53
s.t. (v,w) is not a non-chord or existing edge

4 if v does not have free stubs:

5: v’: node in Vik,iy with free stubs

6: NeighborSwitch(v,v”)

7: if NeighborSwitch fails, v := v’
8 if w does not have free stubs:

9: w': node in Vy; ;1 with free stubs

10: NeighborSwitch(w,w’)

11: if NeighborSwitch fails, w := w’
12: add edge between (v, w)
13: JDAM ({k,i},{l,5})++ JDAM({l,5}, {k,i})++

Output: directed graph representation of G

2) Algorithm: First, we create a set of nodes V, where
|V| = 2|DDS|, we assign stubs, non-chords to each node
and partition nodes, as specified in the target directed degree
sequence DDS®. We also initialize all entries of JDAM to 0.

Then the algorithm proceeds by connecting two nodes (one
from “in” and one from “out” side, because of Condition I,
thus adding one edge (v,w) at a time, that (i) do not form
an edge (ii) do not have a non-chord between them (to avoid
self-loops in the directed graph representation) and (iii) for
whom the corresponding entry in the JDAM has not reached
its target. The added complexity from JDAM construction lies
in the non-chords and the fact that NeighborSwitch operation
can “fail”. This failure means that there is no suitable node to

perform NeighborSwitch with due to a non-chord constraint.
However, in these cases another edge can be added as shown
in Fig. 10. Next, we prove that this is indeed always the case.

Proof. Condition I ensures that every realization is bipartite,
Condition II guarantees that two nodes can be always chosen
to add an edge following the arguments in Lemma 1 and
Condition III ensures that at least one node exist with a free
stub in every part of the partition if JDAM ({k,i},{l,j}) <
JDAM®({k,i},{l,j}) using Lemma 2. Now, we show that
every iteration can proceed by adding a new edge to the
graph. The cases are identical to 2K_Simple as long as
NeighborSwitch operation can be executed without using non-
chords. This leads to two additional cases to the proof earlier:

Case 4. Add a new edge between a node w w/out free
stubs and a node v w/free stubs (or w/out free stubs where
NeighborSwitch is possible) where NeighborSwitch is not
possible for w using w’ without using any non-chords. In this
case w’ has the same neighbors as w except the one for which
it has an assigned non-chord. In this case w’ is not connected
to v and it is possible to add {w’, v} edge ({w’, v} is clearly
not an edge since then v would be also connected to w or w
could have done a NeighborSwitch).

Case 5. Add a new edge between two nodes (v, w) w/out
free stubs, where neither can do a NeighborSwitch with v" and
w’ respectively. We break this case into two subcases, based
on whether nodes v’, w’ (with free stubs) form a non-chord.

Case 5a. v',w' is not a non-chord. This means that we can
add a new edge between v/, w’. It is easy to see that v/, w’
edge is not already present, because otherwise v and w could
have performed a NeighborSwitch.

Case 5b. v',w'’ is a non-chord. This case is not possible
when v, w are not able to perform NeighborSwitches at the
same time. Without loss of generality, let’s say that v connects
to every neighbor of v and w’. This means that no Neigh-
borSwitch is available for v. Now, if we want to construct w
such that it can’t perform a NeighborSwitch with w’, w would
connect to every neighbor of w’; however, this would include
v too, and clearly that edge doesn’t exist. Contradiction.

This concludes our proof and shows that the algorithm will
terminate and generate a bipartite graph after adding | F| edges
without using non-chords. O

Running Time. Since the algorithm is essentially the same
as before, the running time is O(|E| - dias). The only
difference is when a NeighborSwitch fails to free up stubs, we
use a node with free stubs. However, this takes only a constant
operation when compared to 2K_Simple. The final directed
graph can be constructed from the bipartite representation by
collapsing nodes with non-chords and assigning directions to
edges appropriately, this takes O(|V| + |E|) time.

Space Complexity. The D2K_Simple algorithm requires
an additional O(|V'|) space compared to 2K_Simple to store
non-chords. However, the overall space complexity remains
unchanged: O(|V| + |E|).

3) Space of realizations: The algorithm for the directed
case has the same properties for generating any realization as
2K_Simple. In this section we focus on double-edge swaps
for MCMC-based sampling.

D2K is a special case of an undirected JDAM, and thus
inherits the property that JDAM realizations are connected via
2K-preserving double-edge swaps [9], [18] if non-chords are
allowed (equivalently, self-loops in directed graphs). However,
we cannot use the known swaps to sample from the space of
simple directed graphs, for more details see Appendix E-A.

C. D2K+: Additional Properties in Directed Graphs

We show three examples that capture more information of
graphs by imposing more restrictions on the realizations. The
first approach, D2.1K, fixes average in (and out) degree neigh-
borhoods in directed graphs; the second approach, D2K+M,
is a simple heuristic to achieve high number of mutual edges
in realizations, the third approach considers Balanced Degree
Invariant D2K realizations. Other properties can be considered
as well, similarly to the undirected graph construction.

D2.1K: correlation between (in, out) degree pairs. Instead
of working with the bipartite representation, we can work
directly with the directed graph, as in Fig. 9-top right. We
partition nodes by both their in and out degrees (d‘", d5“*), and
we can define the joint degree matrix to capture the number
of edges JDM ((k'™,1°%), (m®", n°%)), between nodes with
(k™ 109ty and (m®, n°ut) degrees.

D2.1K is a natural extension of the undirected 2K and
captures a more restrictive notion of degree correlation than
our main D2K definition. We use the notation D2.1K, since it
already contains the information for a corresponding D2K.
D2.1K fixes the average degree neighborhoods, since for
a given node, v, (with known in degree) D2.1K describes
the in degrees of nodes that connect to v (similarly to out
degrees as well). This is not specified in D2K, since it doesn’t
consider the in and out degree at the same time. However,
we can also observe that D2.1K can be transformed into a
D2K instance with additional attributes. D2K with additional
attributes (D2K+A) is the same kind of generalization used
to get from JDM to JDAM, and our results from D2K carry
over to D2K+A. If we use the additional attribute to capture
the nodes’ in and out degree, then the resulting D2K+A
instance is equivalent to D2.1K. Therefore a simple extension
of D2K_Simple can solve D2.1K instances.

D2K+M: Number of Mutual Edges. This work was
motivated by the observation that, in sparse graphs, D2K
produced an order of magnitude less mutual (reciprocated)
edges than in the original social networks. We use a heuristic
approach to target number of mutual edges in a directed graph
during construction, by greedily adding mutual edges when
permitted by degree and JDAM constraints. In D2K_Simple
line 12-13, we can check if the non-chord pairs of v, w can
form an edge and add it if possible. We denote this approach
as D2K+M or D2.1K+M following the notation from UMAN
where “M” represents the number of mutual edges in a graph.
This heuristic works well in practice as shown in Section IV-D,
but exact solutions might be difficult to achieve.

D2K+BDI: Balanced Realizations. Using our observation
from Section III-D, we can find a swap sequence from any
D2K realization to a balanced realization for D2K graphs.
Since there will be two nodes to pick from at every double-
edge swap when applying Lemma 4 from [9], it is possible

TABLE III
INPUT GRAPHS FROM SNAP [37]

Name #Nodes #Edges Generation (sec)
p2p-Gnutella08 6,301 20,777 0.474
Wiki-Vote 7,115 103,689 1.894
AS-Caida 26,475 57,582 2.066
Twitter 81,306 1,768,135 44,884

to avoid self-loops while transforming a D2K realization to a
D2K+BDI. Since every node has one non-chord assigned, we
can simply pick a node for the double-edge swap that does
not from a non-chord. Details are provided in Appendix F.

D. Simulations for Real-World Directed Graphs

We have the same simulation setup as in Section III-E.
We compare realizations generated by Directed ER (DOK),
UMAN, Directed Degree Sequence (D1K), Directed 2K,
Directed 2K+M, Directed 2.1K, Directed 2.1K+M with the
corresponding target properties captured on input graph (G).
Since we are the first to introduce D2K, we focus on how well
D2K targets various graph properties, rather on evaluating the
algorithm efficiency.

We used examples of directed graphs from SNAP [37]:
p2p-GnutellaO8, Wiki-Vote, AS-Caida (without customer re-
lations), Twitter. Table III provides an overview of the graphs
(without self-loops and multi-edges) used in our experiments
and reports the average time to construct realizations using
D2K for these examples. In the rest of this section, we consider
several well known graph properties (described in Appendix
E-B) also used by Orsini et. al. [6] to study the convergence
of dK-series for undirected networks and we report those that
are more natural for directed graphs, such as the triad census.
We average results over 20 realizations for every construction
method and specific property.

Results. The size of these graphs matches the inputs by
definition. We can also observe in Fig. 11 that Directed Degree
Distributions and Degree Correlations are captured by D2K,
D2.1K as expected by definition. On the other hand, DOK,
DIK and UMAN capture Degree Correlations poorly, thus
D2K graphs have a chance to capture other properties more
accurately than DOK or DI1K.

Dyad Census is not well captured for Twitter, as we
can see in Fig. 11. However, there are order of magni-
tude improvements in the number of mutual edges between
D2.1K (123,040.4) and D2K (3,628.7), DIK (2,155.95) or
DOK (233.05). Of course, UMAN preserves this property by
definition. D2K+M and D2.1K +M does not meet the target
exactly since the current implementation is a heuristic, but it
significantly boosts the number of mutual edges.

Triad Census is surprisingly well captured by UMAN, the
reason being the exact match for the Dyad Census in the
previous point. On the other hand, a convergence can be seen
between dK-series generators with significant improvements
in dense triadic structures from D1K to D2K and from D2K
to D2.1K. Targeting the mutual edges helps D2K and D2.1K
in the dense triadic structures like “2017, “210” or “300”.

Dyad-wise Shared Partners follow similar trends to other
properties, such that D2.1K is significantly more accurate than

D2K. D2K improves over D1K in terms of “outgoing shared
partners” but that improvement decreases at “independent two-
paths” and disappears at “incoming shared partners”.

Expansion is again best approximated by D2.1K and D2.1K
even matches Average Neighbor Degree exactly if marginal-
ized by degrees as in Fig. 11. D2K also follows the general
shape of these distributions but includes larger error, while
DI1K has systematic difference compared to G.

Betweenness Centrality CDF has no significant improve-
ments after matching degree distributions with D1K in Twitter;
other examples reached target closer with D1K. Interestingly
UMAN performs almost identically to DOK, even though the
number of mutual edges is significantly different.

Shortest Path Distribution has slow convergence to target
across different methods, but the average shortest path is
shorter than the observed in G.

K-Core Distribution is best captured by D2.1K, and there
is a small improvement from DIK to D2K using Twitter.
However, the dense core using DIK or D2K is almost an
order of magnitude lower core index. Targeting mutual edges
for D2K helps in reconstructing better structure in terms of
coreness, and gets the results closer to D2.1K.

Eigenvalues of Twitter is again best targeted by D2.1K.
There is a difference between leading eigenvalues in graph
realizations of the other methods but starting at the second
eigenvalue the difference between DIK and D2K quickly
decreases. D2K+M shows significantly lower error than D2K.

The Twitter network showcased most of our general findings
using the directed dK-series. Due to lack of space we defer
the remaining datasets to Appendix E-C.

V. CONCLUSION

Our 2K+ framework advances the state-of-the-art in mod-
eling and simulation of complex networks, especially in the
context of online social networks that exhibit high clus-
tering and are affected by node attributes. It provides an
efficient way to construct simple, directed and undirected
graphs, that exhibit exactly a target degree correlations and
potentially additional properties, including: clustering, number
of connected components, node attributes for undirected and
average neighbor degree, number of mutual edges or balanced
realizations for directed graphs, etc. Key strengths of this work
include: (1) a principled approach to graph synthesis, with
exact guarantees when possible (2K, 2K+A, 2K+CC, D2K)
and efficient heuristics when justified (e.g., the 3K problem is
NP-hard motivating 2.5K and 2.25K heuristics); (2) extensi-
bility to target additional properties by exploiting the insights
we developed, namely the under-defined nature of the 2K
algorithm (e.g., order of adding edges), manipulating attributes
in JDAM, speeding up MCMC, and connections between all
these related problems; (3) efficiency: the time for constructing
large graphs reduced from weeks and days to minutes and
seconds. We have also contributed our implementations to the
Python NetworkX library, both for undirected [34] and for
directed [39] graphs.

REFERENCES

[1] P. Erd6s and T. Gallai, “Grafok el6irt fokd pontokkal,” Mat. Lapok,
vol. 11, pp. 264-274, 1960.

In Degree Distribution

15

D2.1K

1071 W—m D2K
i - G s [540 540 540
10-2 L 10 |- 480 10° 480 103 280
o -4 D2.1K+M | 420 420 Pt
w10 —e— D2.1K) | 360 260 0
& 1044 v g;t*” 1077 -300 1074 300 1024 300
=) +240
g . 240
3105 -® DIK 180 To0
=4 101 1014 180 1014 180
105 DOK F120 120 120
IMAI +
0 UMAN 60 50 60
10° Lo 100 0 100 o
T o L 2 3
100 Tor 0 10 10 10 « 10 10 100 10! “ 102 10° 100 100 102 10°
Degree k1
. Out Degree Distribution D1K 315 DOK UMAN
10~ - .
- i) PPy -G 100 | 70 4x10° 12000 4x10 12000
1072
Taly —+ D21KEM | s 3x 10! 10500 3x 10! 10500
=102 ha 9000 9000
2 10 —e— D2.1K) 2x 10! 2x 10!
Lo v D2K+M 102+ 180 7500 7500
%m D2K Lizs © 6000 & 6000
s
S0 _= DIK 100] Lao 1014 4500 100 4500
106 DOK 5 3000 3000
UMAN [1500 1500
10-7] 100 ‘ ‘ U, 6x10° 6x10°
;" - " o 10° 10t 102 10° 6x10° 101 2x103 x 10k 10 6x10° 101 2x108x 10% 10
Degree a kL k1
Dyad Census Triad Census
100 10% 4 - G
100 = D2.1K+M
Z 100 o = D2.1K
S £ 10° m— D2K+M
]
= E X D2K
2 107 g 10
o= o mmm D1K
10° DOK
10°
107 UMAN
mutual asym " null 003 01z ©021C 021D 021U ©30C 030T 102 111D 111U 120C 1200 120U 201 210 300
ads. Triads
Shortest Path Distribution k-core Betweenness centrality
08 10°
& 10]
—-— G
— 0. — 0.8 -4 D2.1K+M
il 2 —e— D2.1K
] 2 0.6
2o. Z s - v D2K+M
bt S S gad ,J D2K
2 g -m- DIK
=0. & ¢
O mm—— Dok
v UMAN
mElE VEE v 0.0
0 100 200 300 400 500 600 700 80O 10-° 10-7 10-5 103 10
Distance core index k Betweenness centrality
s Average Neighbor In Degree Average Neighbor Out Degree Lo Dyad-wise Shared Partners two-paths) Lo Dyad-wise Shared Partners (Incomi
L] 4 -~
. N g0 e a G
@ 150 N o 1084 1084
2 L & 1001 ! -4 D2.1K+M
< s - = . 5| 0
? L 5w 10° 1054 § —+ D21K
< ¥ n S 80f - o o # 4 ¥ D2K+M
5o vy "ay . 5 2 1004 2 1001 DK
5 ot TSl 2 £ so0] L Y S S
55 L 5 L T T] _m DIK
@ Vg wm ¥ 2 'y 2 2 -
] L T T 10 10
o 50 & 01 Dok
H H 10° 10° UMAN
5 -y
204 s } .
l‘D" ll‘]l UI]] lé" llﬂ" 16‘ ll!)’ UIP ﬂ‘ 100 200]l;ﬂ dﬂ‘ﬂ 500 600 6 500 lU‘Dﬂ lS‘UD 2000 ZSbﬂ
in degree out degree #Shared partners #Shared partners
s Expansion in Expansien out o Dyad-wise Shared Partners (Outgoing) Eigenvalues of Adjmatrix
£ 5 1204 r'“n‘ 120
2 150 2 / -G
2 200l 100
s K 4 D2.1K+M
H 2 Y 80 —e— D21K
2 100 a H Kl ¥ D2K+M
2) 2 Z 60
s A G g | ha D2K
K] o & 404 U “+t-b-b-y9-4 | -# DIK
[B Wvery o DOK
ES -] % 4y, ° v;- MMM UMAN
m & 204 Ry b B R o owomonomoaooooaonm o)
T T T T o
10° 10t 102 107 10° 10! 10? 10° 0 50 100 150 200 250 300 350 25 50 75 100 125 150 175 200
in degree out degree #Shared partners Rank

Fig. 11. Results for Twitter graph: Directed Degree Distribution, Degree Correlation, Dyad-, Triad Census [the order of bars (left-to-right) is the same is in
the legend (top-to-bottom)], Shortest Path Distribution, K-core distribution, Betweenness Centrality, Expansion, Average Neighbor Degree, DSP and top 20

Eigenvalues

[2] V. Havel, “Poznimka o existenci konecnych grafu,” Casopis pro
péstovdni matematiky, vol. 80, no. 4, pp. 477-480, 1955.

S. L. Hakimi, “On realizability of a set of integers as degrees of the
vertices of a linear graph. 1,” Journal of the Society for Industrial and
Applied Mathematics, vol. 10, no. 3, pp. 496-506, 1962.

R. Taylor, Constrained switchings in graphs. University of Melbourne,
Department of Mathematics, 1980.

P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat, “Systematic
topology analysis and generation using degree correlations,” in ACM
SIGCOMM Computer Communication Review, vol. 36, no. 4. ACM,
2006, pp. 135-146.

C. Orsini, M. M. Dankulov, P. Colomer-de Simén, A. Jamakovic,
P. Mahadevan, A. Vahdat, K. E. Bassler, Z. Toroczkai, M. Boguii4,
G. Caldarelli et al., “Quantifying randomness in real networks,” Nature
communications, vol. 6, 2015.

P. L. Erd6s, S. G. Hartke, L. van Iersel, and I. Mikl6s, “Graph realiza-
tions constrained by skeleton graphs,” arXiv preprint arXiv:1508.00542,
2015.

Y. Amanatidis and B. Green and M. Mihail., “Graphic realizations of
joint-degree matrices,” Unpublished manuscript, 2008.

9] E. Czabarka, A. Dutle, P. L. ErdGs, and 1. Miklés, “On realizations

[3]

[4]
[5]

[6

=

[71

[8]

[10]

(1]
[12]
[13]
[14]

[15]

[16]

[17]

of a joint degree matrix,” Discrete Applied Mathematics, vol. 181, pp.
283-288, 2015.

M. Gjoka, B. Tillman, and A. Markopoulou, “Construction of simple
graphs with a target joint degree matrix and beyond,” in 2015 IEEE
Conference on Computer Communications (INFOCOM). 1EEE, 2015,
pp- 1553-1561.

W. Devanny, D. Eppstein, and B. Tillman, “The computational hardness
of dk-series,” in NetSci 2016, 2016.

D. Gale et al., “A theorem on flows in networks,” Pacific J. Math, vol. 7,
no. 2, pp. 1073-1082, 1957.

D. R. Fulkerson et al., “Zero-one matrices with zero trace,” Pacific J.
Math, vol. 10, no. 3, pp. 831-836, 1960.

S. Dorogovtsev, “Networks with desired correlations,” arXiv preprint
cond-mat/0308336, 2003.

W. Aiello, F. Chung, and L. Lu, “A random graph model for massive
graphs,” in Proceedings of the thirty-second annual ACM symposium on
Theory of computing. Acm, 2000, pp. 171-180.

J. Blitzstein and P. Diaconis, “A sequential importance sampling algo-
rithm for generating random graphs with prescribed degrees,” Internet
Mathematics, vol. 6, no. 4, pp. 489-522, 2011.

C. L. Del Genio, H. Kim, Z. Toroczkai, and K. E. Bassler, “Efficient and

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(301

[31]

(32]

(33]

[34]

[35]
[36]
(371
[38]
[39]
[40]
[41]
[42]

[43]

[44]

exact sampling of simple graphs with given arbitrary degree sequence,”
PloS one, vol. 5, no. 4, p. e10012, 2010.

G. Amanatidis, B. Green, and M. Mihail, “Graphic realizations of joint-
degree matrices,” arXiv preprint arXiv:1509.07076, 2015.

1. Stanton and A. Pinar, “Constructing and sampling graphs with a pre-
scribed joint degree distribution,” Journal of Experimental Algorithmics
(JEA), vol. 17, pp. 3-5, 2012.

K. E. Bassler, C. 1. Del Genio, P. L. Erdés, 1. Miklés, and Z. Toroczkai,
“Exact sampling of graphs with prescribed degree correlations,” New
Journal of Physics, vol. 17, no. 8, p. 083052, 2015.

P. L. ErdGs, I. Miklds, and Z. Toroczkai, “New classes of degree
sequences with fast mixing swap markov chain sampling,” arXiv preprint
arXiv:1601.08224, 2016.

P. L. Erdos, 1. Miklds, and Z. Toroczkai, “A decomposition based proof
for fast mixing of a markov chain over balanced realizations of a joint
degree matrix,” SIAM Journal on Discrete Mathematics, vol. 29, no. 1,
pp. 481499, 2015.

M. Gjoka, M. Kurant, and A. Markopoulou, ‘2.5 k-graphs: from
sampling to generation,” in INFOCOM, 2013 Proceedings IEEE. 1EEE,
2013, pp. 1968-1976.

X. Dimitropoulos, D. Krioukov, A. Vahdat, and G. Riley, “Graph
annotations in modeling complex network topologies,” ACM Trans.
Model. Comput. Simul., vol. 19, no. 4, pp. 17:1-17:29, Nov. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1596519.1596522

P. W. Holland and S. Leinhardt, “Local structure in social networks,”
Sociological methodology, vol. 7, pp. 1-45, 1976.

H. Kim, C. I. Del Genio, K. E. Bassler, and Z. Toroczkai, “Constructing
and sampling directed graphs with given degree sequences,” New Journal
of Physics, vol. 14, no. 2, p. 023012, 2012.

M. Gjoka, B. Tillman, A. Markopoulou, and R. Pagh, “Efficient con-
struction of 2k+ graphs,” in NetSci 2014, 2014.

B. Tillman and A. Markopoulou, “On the number of connected compo-
nents of joint degree matrix realizations,” in abstract submitted to NetSci
2018, 2018.

B. Tillman, A. Markopoulou, C. T. Butts, and M. Gjoka, “Construction
of directed 2k graphs,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’17. New York, NY, USA: ACM, 2017, pp. 1115-1124.
[Online]. Available: http://doi.acm.org/10.1145/3097983.3098119

F. Viger and M. Latapy, “Efficient and simple generation of random
simple connected graphs with prescribed degree sequence,” in Interna-
tional Computing and Combinatorics Conference. Springer, 2005, pp.
440-449.

D. R. Hunter, M. Handcock, C. Butts, S. M. Goodreau, and M. Morris,
“ergm: A package to fit, simulate and diagnose exponential-family
models for networks,” Journal of Statistical Software, vol. 24, no. 3,
2008.

J. J. Pfeiffer III, S. Moreno, T. La Fond, J. Neville, and B. Gallagher,
“Attributed graph models: modeling network structure with correlated
attributes,” in Proc. of WWW, 2014.

A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings of
the 7th Python in Science Conference (SciPy2008), Pasadena, CA USA,
Aug. 2008, pp. 11-15.

M. Gjoka, “2k simple implementation in networkx,”
https://networkx.github.io/documentation/latest/reference/generated/
networkx.generators.joint_degree_seq.joint_degree_graph.html, 2016.

A. Traud, P. Mucha, and M. Porter, “Social Structure of Facebook
Networks,” Arxiv preprint arXiv:1102.2166, 2011.

B. Viswanath, A. Mislove, M. Cha, and K. Gummadi, “On the evolution
of user interaction in facebook,” in Proc. WOSN, 2009.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee,
“Measurement and analysis of online social networks,” in IMC, 2007.
B. Tillman, “D2k simple implementation in networkx (in progress).”
N. Developers, “Networkx,” networkx. lanl. gov, 2010.

“Simple Graph: http://mathworld.wolfram.com/SimpleGraph.html.”

P. Holme and B. J. Kim, “Growing scale-free networks with tunable
clustering,” Physical review E, vol. 65, no. 2, p. 026107, 2002.

P. L. Erd6s, Z. Kiraly, and 1. Miklés, “On the swap-distances of different
realizations of a graphical degree sequence,” Combinatorics, Probability
and Computing, vol. 22, no. 3, pp. 366-383, 2013.

T. A. B. Snijders, P. E. Pattison, G. L. Robins, and M. S. Handcock,
“New specifications for exponential random graph models,” Sociological
Methodology, vol. 36, pp. 99-153, 2006.

Balint Tillman received the B.Sc degree in Business
Information Technology from the Corvinus Univer-
sity of Budapest, Hungary, in 2008, the M.Sc degree
in Software Development and Technology from IT
University of Copenhagen, Denmark, in 2012. He
was an Intern with Google in 2016, 2017, and 2018.
He is currently pursuing a Ph.D degree in Networked
Systems Program from the University of California
at Irvine since 2014.

He received the Henry Samueli Fellowship for
Networked Systems 2015-2016.

His research interests include graph algorithms and machine learning in
computer networks.

Minas Gjoka received his B.S. (2005) degree in
Computer Science at the Athens University of Eco-
nomics and Business, Greece, and his M.S. (2008)
and Ph.D. (2010) degrees in Networked Systems at
the University of California, Irvine. He is currently
with Google, Santa Monica. His research interests
are in the general areas of networking and distributed
systems, with emphasis on graph construction al-
gorithms, network security, network measurements,
sampling and analysis of massive online graphs, and
the design of networked systems.

Carter T. Butts is a Professor in the departments
of Sociology, Statistics, and Electrical Engineering
and Computer Science (EECS) and the Institute for
Mathematical Behavioral Sciences at the University
of California, Irvine. His research involves the ap-
plication of mathematical and computational tech-
niques to theoretical and methodological problems
within the areas of social network analysis, math-
ematical sociology, quantitative methodology, and
human judgment and decision making. His work has
appeared in a range of journals, including Science,
Sociological Methodology, the Journal of Mathematical Sociology, Social
Networks, and Computational and Mathematical Organization Theory.

Athina Markopoulou (S°98-M’02-SM’13) is cur-
rently an Associate Professor in the EECS Depart-
ment, at the University of California, Irvine. She
has held short term/visiting positions at SprintLabs
(2003), Arista Networks (2005), and IT University
of Copenhagen (2013). She received the Diploma
degree in Electrical and Computer Engineering from
the National Technical University of Athens, Greece,
in 1996, and the M.S. and Ph.D. degrees in Electrical
Engineering from Stanford University in 1998 and
2003, respectively.

She received the OCEC Educator Award (2017), the Henry Samueli School
of Engineering Faculty Midcareer Award for Research (2014) and the NSF
CAREER Award (2008). She has served as an Associate Editor for [IEEE/ACM
Transactions on Networking (20132015), an Associate Editor for ACM CCR,
a General CoChair for ACM CoNext 2016, a Local Arrangements Chair for
ACM SIGMETRICS 2018, and a TPC Co-Chair for NetCod 2012.

Her research interests are in the general area of networking, including
mobile and social networks, network measurement, network security and
privacy, and network coding.

APPENDICES TO IEEE/ACM TRANSACTIONS ON
NETWORKING PAPER:
“2K+ GRAPH CONSTRUCTION FRAMEWORK”
BY TILLMAN ET AL.

APPENDIX A
2K+A ALGORITHM

Section III-C describes the algorithm for targeting a given
JDAM and the details are provided below.

Algorithm 3: 2K_Simple_Attributes
Input: JDAM®
Init: JDAM({k,4},{l,5}) =0,V ({k,i},{l,5}) € JDAM®
1: for ({k,i},{l,5}) € JDAM®({k,i},{l,5})
2: while JDAM ({k,i},{l,7}) < JDAM® ({k,i},{l,5})
3: Pick any nodes v € Vi 43 and w € Vi 5y

s.t. (v, w) is not an existing edge

if v does not have free stubs:
v’ node in Vi ;3 with free stubs
NeighborSwitch(v,v")

if w does not have free stubs:
w': node in Vi, ;3 with free stubs
NeighborSwitch(w,w’)

10: add edge between (v, w)

11: JDAM ({k,i},{l,j})++; JDAM({l, 5}, {k,i})++

Output: simple graph with JDAM = JDAM®

D A

APPENDIX B
SPACE OF CONSTRUCTED UNDIRECTED GRAPHS

We evaluate the space of graphs that our algo-
rithms can construct through simulations. We compare
against two main baselines for comparison: 2K_BDI and
2K_Configuration (for the latter, after throwing away
self-loops and multi-edges). We show that 2K_BDTI can pro-
duce significantly less graphs than 2K_Simple, due to the
BDI constraints.

A. All Seven Node Graphs

We experimentally show that 2K_Simple can construct all
possible graphs with up to seven nodes, while 2K_BDI can
produce much less.

We use the library NetworkX [40] to generate all 1044
non-isomorphic graph instances that contain seven nodes. We
should note that the number of such graph instances increases
exponentially with size e.g. for n=24 it is ~ 1.95 x 10°° [41].
For this reason we use in our experiment a small size of
n=7 that gives 1044 instances. For each graph instance we
calculate the corresponding JDM, which results in 768 unique
JDM matrices (because there are cases where several graph
instances correspond to the same JDM matrix). Fig. 12(a)
shows the frequency of JDM matrices. We see that 598
matrices appear only once. Therefore, if a generator received
as input one of those JDM matrices it would always produce
the same graph. On other extreme, two JDM matrices appear
6 times each. Therefore, if a generator received as input

one of those JDM matrices it could produce either of the 6
corresponding graphs.

We conduct the following experiment. In each iteration, we
feed the three algorithms with all 768 JDM matrices and we
observe how many unique matrices each algorithm has gen-
erated, cumulatively since the first iteration. Fig. 12(b) shows
the results. We observe that both simple graph construction
algorithms (2K_Simple and 2K_BDI) generate 768 unique
graphs in the first iteration; 2K_Configuration generates
less graph instances due to multi-edges, which we removed.
As the number of iterations increases, we observe that both
2K_Simple and 2K_Configuration reach 1044 (i.e., the
total number of unique graphs corresponding to the 768 unique
JDMs) in less than 100 iterations. However, the 2K_BDI
algorithm is unable to create more than 837/1044 (=80%)
unique graphs after 200 iterations, due to the BDI constraint,
discussed in Section II.

o o B8
g & 8
g 3 8
T
u
.

850 g e 6 AAH-HO POERII SOOI 000400000444
e

number of JDM matrices
number of unique graphs

#=¢ 2KBDI

m.m 2K Configuration
o0 2K Simple |
— Max #Unique Graphs

2 L
number of times to appear 10° 107 107
iteration

(a) Frequency of JDM matrices.

(b) Cumulative number of unique
graphs with seven nodes.

Fig. 12. Generation of all non-isomorphic graph instances with 7 nodes.

B. Scale-free Graphs with Clustering

We now look at several graph properties beyond the targeted
JDM. We show that our 2K algorithm generates graphs that
have a quite large range of these other properties, much larger
than 2K_Configuration and 2K_BDI. Put differently,
2K+S explores the space of graphs much faster than existing
2K construction algorithms.

We select the Holme and Kim algorithm [42], implemented
in NetworkX [40] by function powerlaw_cluster, to generate
graphs with a powerlaw degree distribution and fine-tuned
clustering. The algorithm requires three parameters: the num-
ber of nodes n, the number of random edges m to add for
each new node, and the probability p of adding a triangle
after adding a random edge. We set n = 100 and m = 2
and we vary p between 0 — 1 with a step size of 0.01.
As a result, we produce 100 graphs from this model with
exactly 100 nodes, 196 edges, and a varying amount of average
clustering ¢. For each of the 100 graphs, we calculate the
JDM and produce 10° graph instances using the algorithms
2K+S, 2K_BDI, and 2K_Configuration. We produce a
total of 3 - 100 - 10> = 3 - 107 graphs. For each graph, we
compute the following properties: (i) the average clustering
coefficient ¢, (ii) the average shortest path length over all node
pairs, (iii) the average node closeness centrality; the closeness
centrality of a node v is defined as the inverse sum of distances
of v to all other nodes and measures the speed of information

10 T 10 T T T T T T T T T
. *+¢ 2KEBDI < 10°H e 2KBDI 1o |[# % 2KBDI

10 107 .&. S 1@ 2K Configuration T [|eve 2K configuration - % ® 2K Configuration
) I ; ® == 2K Simple Clustering 210" {{m-m 2K Simple Clustering o ',:H,‘ & g1 [|m == 2K simple Clustering M
g 107 B0} Yo 'y 1 = » % g YT %
g I S T & T S w
§10° S10°} IR LY @, o [Q" 2 N £ o
ES & =3 L g10°F ’ :? % 1 % s " G 8
o < F y g Rd st %, g 10 o L) Y]
< 10% §10% ks e N g o o H ¢ = . S 2%
5 L 5%
g g1 =2 - S0 .) = i s @
3 4 b * o B 53 ® i , .
8t 20 . ™ %0 o 3 Fs W
o o i: . S 10 » L . s)
° 9 £ ', z . B E .) Zs
< g 4, (Y 2 A : 210 R S
z 10° & 10 ° 0y Z10° L z 3 e

H S L] = -" ’ 10 . g' I

a ;
10

. , o, . , \ , , , ,
0.20 5 0. 0.35 0.40 80 100 120 140 160 180

7 | | | 7 ! L} | | L
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 25 3.0 35 2.0 25 5.0 5.5

Average Clustering Coefficient Average Shortest Path Length

0.2 .30
Average Node Closeness Centrality Number of Maximal Cliques

Fig. 13. We use the Holme-Kim algorithm [42] to produce 100 graphs, each with exactly 100 nodes, 196 edges and a range of ¢ values. We then calculate
the JDM matrix for each produced graph instance and set it as the JDM® for each 2K construction algorithm. Overall we generate 107 graph instances
per construction algorithm and empirically calculate the pdf for each graph property.

spreading from v, and (iv) the total number of maximal cliques
>~ C;, where C; is the number of maximal cliques of order ¢

We should note that in this experiment we chose to generate
small graphs with fixed number of nodes and edges for practi-
cal reasons. First, it is computationally complex to generate 30
million graph instances and their corresponding properties, and
the small size of the produced graphs facilitates that process.
Second, we fixed the number of edges so as to constrain the
variability of the considered properties over all possible graphs
with given input JDMs. That makes the overall space of
graphs smaller and thus easier to sample. Nevertheless, the
number of all possible graphs is still enormous to exhaustively
enumerate. Thus we provide a relative comparison of the
construction algorithms in regard to the achieved range of
given properties.

Figure 13 shows the empirical probability density for
each of the considered properties. 2K+S covers a signif-
icantly larger range for all properties when compared to
2K_Configuration and 2K_BDI. e.g., 2K+S produces
graphs with ¢ that ranges in [0,0.67] whereas the range
of values for 2K_Configuration is [0,0.41], and for
2K_BDI [0,0.44].

APPENDIX C
TARGETING JDM AND CLUSTERING

Following up on Section III-B of the main paper, we provide
details on 2K+S paramaters and implementation.

Tuning Sortedness parameter. Fig. 14 shows an example
of the correlation between the sortedness parameter, S, and av-
erage clustering coefficient for three types of graph inputs: two
graph models and one Facebook network are used to generate
the graphs. Fig. 14 shows that, for a fixed JDM®, by setting
parameter S between 0 and 1, we can also control the aver-
age clustering coefficient ¢ of the produced graph between
min(¢) and maz(c). We use function y = sin(5- 1= e) to
approximate the observed relation between parameter 5) and
c. Therefore, setting parameter S = s roughly corresponds to
an average gra h instance with average clustering coefficient
equal to 2-max arcszn()

Running Tlme The time complexity of 2K+S is similar to
2K_Simple for adding edges (i.e., O(|E| - dmaz)), plus the
time for the function order(List, S). If naively implemented,
the time to sort the input list £’ is O(|E’|log(|E’|)). However,
the list £’ is consumed by lines 4-7 in Algorithm 2), which
require at most |F| edges that pass the condition in Line 5.

Therefore, we argue that we do not need to enumerate all ele-
ments of E’ because only some of the node pairs in E’ will not
be rejected by the condition in Line 5. In practice, we observed
that enumerating the first k| E| node pairs of list E’, where k is
some small number, suffices to add the overwhelming majority
of edges in the graph. The small number of remaining edges
(if any) will be taken care of by Stage 2. Furthermore, we use
the coordinate system r, to sort nodes in each degree group k
which takes time O(}_, Drlog(Dy)). After this initial sorting
phase, each node v can find its closest k£ neighbors in linear
time. In summary, the running time of a smart implementation
of the function order(List, S) that returns k|F| elements is
O(k|E| + >, Dilog(Dy)). The expression is dominated by
the term k|F| in real-world graphs, which makes the running
time approximately linear in the number of edges.

APPENDIX D
2K+MINCC PROOFS

This appendix provides the details for Lemma 5 and 6 from
Section III-D of the main paper.

A. Any Realization to MinCC Swap Sequence, Extended Proof

First, we show how to construct a realization with minimum
number of connected components from any JDM realiza-
tion using JDM-preserving double-edge swaps (while not
increasing the number of connected components at any step).
The main algorithm and the notation follows the Valid Tree
Construction algorithm described by Amanatidis et al. in [18],
but the key difference is that the modified algorithm starts
from a JDM realization (instead of a V' —1 “valid” edges) and
only uses JDM-preserving double-edge swaps to construct a
realization with minimum number of connected components.
This change will require some adjustments in the algorithm
and in the certificate that is produced to show that there is no
realization with less than ¢ number of connected components.

We use the following notation:

o V; is a degree group (nodes with degree i) V= UV;.

e FFCV, and A is a partition of F.

Define a weighted graph G°*"*-(V’, E’,w) with a node for
each element A; in A and one node for each V,, ¢ F, assign
the following edges and weights:

o If 3V, € A; and 3V, € A, such that JDM (z,y) > 0,
then add edge (¢, j) with weight w(i,j) = 1.

1.0

1.0

0.8

0.6

Value
Value

0.4

Sortedness(E') | |
“““ Parameter S

-+ ymsingzE

0.2

L e 1.0,

Value

== Sortedness(E") || 02l ‘ == Sortedness(E')||
“““ Parameter S ’ wn Parameter S

== y=sin(; == y=sin()

X I | I T T 0. I I
° 8.0 0.1 0.2 0.3 0.4 0.5 0.6 8.0 0.1 0.2
Average clustering coefficient ¢

(a) Erd6s-Rényi generator,
n = 100,m = 483,p = 0.1

Average clustering coefficient ¢

(b) Powerlaw-Cluster generator,
n = 100,m = 196,p = 0.1

L L I L L T T
0'00.05 0.10 0.15 020 025 030 0.35 0.40 045 0.50
Average clustering coefficient ¢

I T
0.3 0.4 0.5 0.6

(c) Facebook Caltech network,
n = 769, m = 16,656

Fig. 14. We use two different graph models (Erd&s-Rényi, Powerlaw-Cluster [42]) to generate two graph instances and we select one real-world network,
Facebook Caltech [35]. For each graph instance, with n nodes and m edges, we calculate its JDM and set it as our target. We then generate 105 graphs
with sortedness and parameter S values varied between [0,1], and record the average clustering coefficient ¢ of each generated graph.

Case 3, remove V,, V3 Case 1, pick u, v € V5,
add V3, V3, pick y, x

Case 1, picka, b € V3,
pick ¢, d
Preform double-edge swap Preform double-edge swap

Return G

Fig. 15. Example execution of Find-MinCC algorithm.

o« If V,,V, ¢ F, then add edge (z,y) with weight
w(z,y) = JDM(z,y).

o IfV, ¢ Fand JDM(z,z) > 0 add self-loop with weight
w(z,x) = JDM (z,x).

e For any A;, V,, add an edge with weight w(i,z) =
Yov.ea JDM (2, z), if w(i,z) > 0.

Given a realization G(V,E) of a JDM with minimum
number of connected components (¢ > 1), we can construct
Geet- (V' B’ w) for every F, A combination, by collapsing
nodes corresponding to A and V;, then the following inequality
holds > . w(e) = [A[+ >y, ¢ |Vi| — c in the constructed
weighted graph, that has at most ¢ components. This follows
from the existence of the realization. If there is partition /' and
¢, where the above inequality doesn’t hold, it is a certificate to
show that there is no realization with ¢ connected components.

We refer to the modified algorithm from [18] as Find-
MinCC here. Find-MinCC finds a swap sequence instead of
building a partial realization of a spanning tree for input JDM.
Fig. 15 shows a simple example to highlight the intuition
behind how the algorithm uses double-edge swaps to move
and break cycles to connect different connected components
in a JDM realization.

Theorem 7. The Find-MinCC algorithm finds a realization
with the minimum number of connected components of JDM
in polynomial time.

Proof. Tt is trivial to show, that if Gy is a forest or a
single connected component realization, then the algorithm
found a minimum number of connected component realization.
Consider the three cases of Algorithm Find-MinCC.

Find-MinCC(G)
begin
V= UF_ | V;; j=0; G=G,
while G is not connected or not a forest:
begin
O, = {v : nodes on cycles in G;}
CJZ{‘/ZOJH‘/Z#@}
P; = {V; : V; intersects at least two connected
components of G}
Z; = {e € G; : at least one endpoint of e is in some
Vi € By}
Case 1: If C; NP #0
pick u,v in some V; € C; N P; from different
components in G and v € O; N Vj;
j=max(-1,0); G; =GUP; U Z;; G =Gy
pick x: neighbor of u from a cycle in G;
pick y: neighbor of v in G;
remove xu, yv from G; add xv, yu to G;
Case 2: else if P; = ()
let K1, K», ..., K be components of G
let A; =V, :V, CV(K;) for 1 <i<J\
let F'=Ux A let A={4;, ..., A}
output (F, A); GU!_, P, Ul_, Z;; terminate
Case 3: else Gj_;,_l = Gj \Pj; G= Gj+1;j =j+1
end
output Go;
end

First, we show that the algorithm terminates after polyno-
mial many iterations: The recursion can only go to depth k -
the number of distinct degrees - using Case 3, because at that
point Case 2 will happen and the algorithm terminates. On the
other hand, we will shortly show, that when Case 1 happens
at depth j, then Case 1 will happen j consecutive times and
the number of connected components will be decreased by
one in Gy. This means that the while-loop can iterate at
most O(k|V|), using 2k iterations to merge pairs of connected
components (loosely upper bounded by |V]).

Similar to [18], we notice that if GGy is not a realization

with minimum number of connected components, then for any
J such that a G is constructed by the algorithm we have
O; # 0 (and thus C; # (). Gy either is a forest or contains
cycles. Also any G; if created will have O,;_1 € V(G;),
because otherwise Case 1 would happen. Intuitively cycles
are preserved as j increases.

Case 1. First, notice that Case 1 is exactly a JDM-preserving
double-edge swap, thus any realization after performing these
swaps will be a realization of the same JDM as the input graph.
The argument is similar to [18]: the number of connected
components will decrease by 1 in Gy, if Case 1 happens at G;.
Notice that two components that got connected of G = G,
K, K’, must be subgraphs of the same connected components
in G;j_, otherwise they would have been connected in an
earlier iteration (i.e., when G was still G;_1). After the double-
edge swap, we call G;_l the graph that got back P;_1,7;_
(i.e., the nodes and edges previously removed in at j—1 depth).
The key observation is that, in G;_l, a new cycle is created for
some v from V; € P;_4, because v was on a path connecting
K,K' in G;j_; before. This will result in another Case 1 in
G';_, until j reaches 0 and results in a decrease of number of
connected components by one in GGy. Notice that differently
from [18], we first add back the P;_1, Z;_; and then perform
the double-edge swap, in order to ensure that v has neighbors
to perform double-edge swaps with at G;;r

Case 2. The analysis of Case 2 is the same as Case 3 in [18],
except we already know that all the required edges are present.
Let K1, K3, K be the connected components of G; and let A
and F' be defined as in the algorithm. This assignment makes
sense for G;: if a node v € V, is in K then all nodes of
V, are also in K; (since P; = (). If we consider the current
graph, Gy, all cycles in G are contained in the subgraph of
Gy induced by nodes of U; K.

Following the proof from [18], we only have to notice that,
if we identify all A; with one single node to get H from
Gy, H will have ¢ connected components but contains no
cycles. That means |E(H)| = |V(H)| — ¢, to have ¢ =
¢ — 1 connected components it changes the above equality to
|[E(H)| < |V(H)|—¢, but we also know that |V (H)| = |A|+
ZV&F |Vil, and |E(H)| = % Zi;vigF Zj;ng}? JDM (i, j)+
Zi;vigp 22:1 Zy:\/yeAz JDM(@ y)

In conclusion, if we use (F, A) to construct the weighted
graph G°"*(V', E', w) as before, then) 5 w(e) < |A] +
Doy, ¢ |Vi] — ¢/, showing that no realization exists with less
than ¢ connected components. [] O

The running time of Find-MinCC will depend on the
number of connected components of G and the minimum
number of connected components achievable c. An input
realization can be constructed in O(k|E|) time. Each iteration
in Find-MinCC can be easily done in O(|E|+|V|) time using
Tarjan’s bridge finding algorithm to identify nodes in cycles
and using sets appropriately to do operations for O,C, P, Z.
Find-MinCC runs in O(k|V||E|) which dominates the input
construction time. However, 2K_Simple returns with realiza-
tions using ¢’ connected components, this results in a better
overall running time of O(k(¢’ — ¢)|E|) and O(k|E|) running
time if we assume that ¢’ —c is some small constant. The Find-

20

MinCC algorithm can be efficiently applied for realizations
that have close to minimum number of connected components
for a target JDM.

Since Find-MinCC only used JDM-preserving double-edge
swaps without increasing the number of connected compo-
nents at any step, the union of the swaps used during the
algorithm will transform the input realization to a minimum
number of connected component realization.

B. MinCC to MinCC Swap Sequence, Extended Proof

In this section we show that every pair of JDM realiza-
tions with minimum number of connected components are
connected over double-edge swaps. Again, this can be shown
by using the proof for the space of JDM realizations from
[18]. Here we have to make an additional constraint, such
that during every double-edge swap the number of connected
components will not increase.

The proof is based on induction on the size of the symmetric
difference, &k, between two JDM realizations with MinCC
(G, @"). The key idea follows the results from [18], however,
here we have to consider the number of connected components
at every step. First we start by several simple observations and
definitions about the problem.

We use a red-blue graph to describe the symmetric differ-
ence of edges where red represents edges only in G, blue
represents edges only in G, black edges are present in both
G, G’ and edges not present in either graphs will be left empty.
Red (blue) path is defined as a simple path in the red-blue
graph that only contains red (blue) and black edges.

There are two simple but crucial points, shown by Amana-
tidis et al. [18] and others in earlier work: (1) the number of
red and blue edges for a node is the same and (2) there always
exists a red-blue circuit decomposition for the red-blue graph
using red and blue edges, i.e., the symmetric difference. Our
proof is similar to proofs based on alternating red-blue cycles
for degree sequences, but our cases also correspond to cases
found in [18].

Similar to Amanatidis et al. [18], our proof is based on
pairing nodes, that can be defined as two nodes from the same
degree group on an alternating red-blue cycle of distance 2
(along the cycle). It is trivial to see that double-edge swaps
around these nodes will be JDM-preserving.

There is only one case where the number of connected
components would increase after performing a double-edge
swap: v — w —p — u — z (where p is the only (simple)
path between w,u). A double-edge swap using w, z would
return new paths v — 2z and a new w — p — u — w cycle,
thus increasing the number of connected components. For
simplicity, we will call these configurations red and blue “cut-
paths” depending on whether they appear in red or blue graphs.
However, degree 1 nodes cannot participate in a cycle, thus any
double-edge swap using two degree one nodes will maintain
the number of connected components. This observation will
significantly shorten our proof since it means, that we can
apply any available double-edge swap from Amanatidis et al.
[18] to handle degree 1 nodes; for the rest of this discussion
we assume that the pairing nodes have at least degree 2.

Fig. 16. Case 1, subcase 1: (u,u1) is blue (top), (u,u1) is black (bottom).

Double-edge swaps across different components cannot
increase the number of connected components, only decrease if
at least one edge was initially in a cycle. This observation also
simplifies our proof, since double-edge swaps of this nature
can be done without additional consideration of the connected
components and solved by Amanatidis et al. [18].

The proof will show that starting from any symmetric
difference (k > 4), we can reduce this difference by at least
2 using double-edge swaps while both red and blue graphs
preserve the number of connected components. In the main
part of the proof, pairing nodes have degree at least two,
thus when a cut-path exists, there is going to be a usable
node either on the cut-path or another neighbor which we can
pick. The following cases show that in every configuration
(independently whether the neighbor has red, blue or black
edge), we can progress to decrease k using double-edge swaps
that preserve the number of connected components.

Base case k = 4: The red-blue graph will only contain a
single alternating 4-cycle, 0 < k < 4 is not possible. Since
both realizations have the same CC, both red or blue double-
edge swaps along the 4-cycle will maintain the number of
connected components for both the red and blue graphs.

We break our cases into 3 main groups depending on the
availability of pairing nodes and the length of alternating
cycles where pairing nodes exist:

Case 1: If £ > 4 and there are pairing nodes (u,v) in
a 4-cycle: we have to consider red and blue cut-paths of
the type discussed earlier around these nodes. There are two
configurations of red and blue cut-paths that would cause an
increase in CC if naive double-edge swaps were executed. This
means that u,v do not share neighbors in the same colored
graph.

Subcase 1: Red and blue cut-paths meet at a non-pairing
node (x): depending on whether the first edge on blue cut-path
from u to u; is blue or black we have to cases that we can
handle similarly as shown in Fig. 16.

If (w,u;) is blue, perform blue double-edge swap
(u,u1), (v,2) — (v,u1), (u,x), this results in (v,uy) is
blue or black depending whether (v,u;) was red or empty
before; and (u,) becoming black from red. In addition, we
can perform another red double-edge swap (u,us2), (v, w) —
(v, u2), (u,w) that behaves the same way as the first swap.

If (u,u;) is black, perform blue double-edge swap

21
Fig. 17. Case 1, subcase 2: (u,u1) is blue (top), (u,w1) is black (bottom).

(u,u1), (v,2) — (v,u1), (u,x), this results in (v,uy) is
blue (in this case (v,u1) has to be empty before); (u,u;)
becoming red from black; and (u,z) becoming black from
red. In addition, we can perform another red double-edge swap
(u,u1), (v,w) = (v,u1), (u, w) that removes all the red and
blue edges.

Subcase 2: Red and blue cut-paths meet at a pairing node
(v): since no paths cross the other pairing node u, and u has
degree at least 2, there will be either two neighbors (one with
red us and one with blue edge u;) or a neighbor with black
edge. This case is very similar to the previous subcase 1, and
swaps are shown in Fig. 17.

If (w,u;) is blue, perform blue double-edge swap
(u,uy), (v,2) = (v,u1), (u,x), this results in (v,uy) is
blue or black depending whether (v,u;) was red or empty
before; and (u,) becoming black from red. In addition, we
can perform another red double-edge swap (u,us), (v, w) —
(v,u2), (u,w) that behaves exactly the same way as the first
swap.

If (u,uy) is black, perform blue double-edge swap
(u,u1), (v,z) — (v,u1), (u,x), this results in (v,uy) is
blue (in this case (v,u;) has to be empty before); (u,uq)
becoming red from black; and (u,z) becoming black from
red. In addition, we can perform another red double-edge swap
(u,u1), (v,w) = (v,u1), (u,w) that removes all the red and
blue edges.

In all of these subcases the double-edge swaps will decrease
k by 4, because we resolve the 4-cycle without creating more
red or blue edges. More importantly, these double-edge swaps
will not increase the number of connected components in
neither the red nor the blue graph.

Case 2: If £ > 4 and there exists pairing nodes (u,v) on
an alternating cycle with length more than 4: We are only
interested in the two neighbors along the cycle for each node
u,v: X,y and the shared one: w. Here we have 3 major subcases
depending on whether 0,1 or 2 black edges are formed along
the cycle:

Subcase 1: there are no black edges: u, v have at least one
neighbor difference, depending on whether it is y or another
neighbor v; there are different cases, as follows:

4
Lt

Fig. 18. Case 2, subcase 1:
cut-paths.

(v,v1) is blue and two configurations of blue

If v has a blue neighbor, v;, not on the cycle: we
can perform a blue double-edge swap (v,v1), (u,w) —
(v,w), (u,v1); this makes (v,w) black and (u,v;) blue
((u,v1) was not red since that would be handled by case 1
with an alternating 4-cycle). This swap preserves the number
of components if the blue cut-path goes through wu(p)yvovy,
or uw(p)vyvy and in any other case we could have performed
the blue double-edge swap along the cycle. In addition, this
decreases k by 2 without change in the red graph. Two
examples shown in Fig. 18.

If v has a black neighbor, v, and red cut-path on zupwv,
blue cut-path on wv(p)yvvy or vwpbivy: we can perform a
blue double-edge swap (v,v1), (u,w) — (v,w), (u,vy1); this
makes (v, w) black and (u, v1) blue, (v,v1) red. Now perform
red double-edge swap (v,v1),(u,z) — (v,),(u,v1), this
makes (u,v;) black, (v,z) red. These swaps preserve the
number of connected components as shown in Fig. 19 top
and middle.

If v has a black neighbor vy, and red cut-path on uzxpv;vw,
blue cut-path on wv(p)yvvi: we can perform a blue double-
edge swap (v,v1), (u,w) = (v, w), (u,vy); this makes (v, w)
black and (u,v;) blue, (v,v;) red. Now perform red double-
edge swap (v,v1), (u,z) — (v,x), (u,v1), this makes (u,v7)
black, (v,x) red. These swaps preserve the number of con-
nected components as shown in Fig. 19 bottom.

Remaining subcases are symmetric from the point of view
of w using its neighbors connected through red or black
edges. All of these cases are maintaining number of connected
components while decreasing k by 2.

Subcase 2: there is only 1 black edge: The single edge
present leads to symmetric cases, here we consider the black
edge present between (v, x).

If blue cut-path is on wvpyv, the naive double-edge swap
using only blue edges would create a cycle, but using blue
double-edge swap (v, x), (u,w) = (v, w), (u,), maintain CC
as shown in Fig. 20.

If blue cut-path is on vwpvy, u will have either a red
or black neighbor w; where (v,u;) is empty. In either

sretsul
S
FIENS:

Fig. 19. Case 2, subcase 1:
blue (red) cut-paths.

SR

Fig. 20. Case 2, subcase 2: blue cut-path is on wvpyv

(v,v1) is black and possible configurations of

case, first perform red double-edge swap (u,u), (v, w) —
(u, w), (v,uy), this makes (u,w) black, (v,u;) red. If (u,uq)
was red we can stop here, otherwise (u,u1) became blue after
the swap. However, we can now perform a blue double-edge
swap (u,u1), (v,2) = (u,x),(v,uy), this makes (u,z) and
(v,uy) black, (v,z) red. Cases shown in Fig. 21.

Subcase 3: there are 2 black edges: Double-edge swaps
using pairing nodes will not affect connectivity, example
shown in Fig. 22.

N
INESES

Fig. 21. Case 2, subcase 2: blue cut-path is on vwpvy, (u,u1) is red (top)
or black (bottom).

%
X

Fig. 22. Case 2, subcase 3: 2 black edges

R
e

Fig. 23. Case 3, subcase 1: possible cases when cut-path is uw(p)vy

After performing any of these subcases the number of
connected components will not change, but we have decreased
k by 2 in every case.

Case 3: No pairing nodes exists: We can create pairing
nodes without increasing the number of connected compo-
nents. There will be a red, (u,x), and blue, (v,y), edge with
same degree endpoints (u,v) and (X,y) in either a single large
cycle (longer than 4) or 2 alternating-cycles. (u,y) and (v, z)
can be only black or empty, otherwise there would be available
pairing nodes. u, v will have at least one neighbor difference
in both red and blue graphs.

Subcase 1: there is no black edge between endpoints: if
trivial swaps increase CC, we can focus on blue cut-paths and
blue connectivity and perform only blue double-edge swaps
and use symmetric cases for red connectivity.

If cut-path is uw(p)vy, then there exists another neighbor
of u not connected to v (in blue graph), u;. We can perform
blue double-edge swap (u,u1), (v,y) — (v,u1), (u,y), that
makes (v, ;) and (u,y) blue; when (u, u1) was black it turns
red, and when (v, u;) was red it turns black. The double-edge
swap creates pairing nodes X,y without change in k£ and other
pairing nodes u,v at an increase in k by 2 when (u,u;) was
black while (v, u;) was empty (before the swap), Fig. 23. If
cut-path is wuu; (p)yv, then the same blue double-edge swap
can be performed using the first node u; on path, as shown
in Fig. 24.

23

SR
il

Fig. 24. Case 3, subcase 1: possible cases when cut-path is wuu1 (p)yv

Subcase 2: there is a single black edge between endpoints,
(v, z) (symmetric cases exists if for (u,y)): If blue edges are
from different components blue double-edge swap (using blue
edges only) is viable and creates pairing nodes y,x, without
increasing k or number of components. (u,y) is always empty
and u, v have the same neighbors in the blue graph. Now we
consider if they are in the same component in blue graph and
where the blue cut-paths occur:

If cut-path is uww(p)vy, then there exist another blue or
black neighbor of u, u; not connected to v, and not on any
critical blue path. We can perform blue double-edge swap:
(u,u1), (v,2) = (v,u1), (u, x), this makes (u, x) black, (v, z)
red. If (u,u;) was blue, then this creates pairing nodes x,y,
while not increasing k. If (u,u;) was black and (v, u;) was
empty, then this creates two pairing nodes x,y and u,v while
increasing k by 2. If (v, u1) was red, only pairing nodes are x,y
and k was not increased. Of course, the number of components
have not changed. Cases shown in Fig. 25.

If cut-path is uwui(p)yv where uy is not connected to v,
we can perform blue double-edge swap: (u,u1),(v,y) —
(v,u1), (u,y), that makes (u,y), (v,u1) blue, (u,u;) red if
(u, uy) was black initially. It creates pairing nodes, x,y without
increasing k. When (u,u;) was black, it also creates u,v
pairing nodes and k increases by 2, Fig. 26.

If cut-path is wui(p)zv where wu; is not connected to v,
we can perform blue double-edge swap: (u,uq),(v,x) —
(v,u1), (u,), that makes (u, x) black, (v, u1) blue, (v,) red,
and (u, uq) red if (u,u1) was black initially. It creates pairing
nodes, x,y without increasing k. When (u,u;) was black, it
also creates u,v pairing nodes and £ increases by 2, Fig. 27.

Subcase 3: there are two black edges between endpoints:
We discuss the possible cases from the point of view of v’s

9\6

s
Y78 WV Wi

Fig. 25. Case 3, subcase 2: possible cases when cut-path is uw(p)vy

S84
R

Fig. 26. Case 3, subcase 2: possible cases when cut-path is wu1 (p)yv

7
A

Fig. 27. Case 3, subcase 2: possible cases when cut-path is uuq (p)yv

M4
3

Fig. 28. Case 3, subcase 3: possible cases depending on the color of (u, z)
edge.

neighbors in the red graph, however there are symmetric cases
for u as well. v has at least one red neighbor, z:

If z has no edge to u, then the red double-edge swap
(v,2), (u,y) = (v,y), (u, z) makes (u,y) blue, (y,v) black,
(v, z) red; and it creates pairing nodes: x,y. The swap main-
tains the number of components and does not increase k, Fig.
28 top. If z has a black edge to u, then the blue double-
edge swap (v,z), (u,z) — (v,2),(u,z) makes (v,z), (u, z)
red and (v, z), (u, x) black; and it creates pairing nodes: x,y.
The swap maintains the number of components and does not
increase k, Fig. 28 middle. Main case 2 will decrease & after-
wards by 2 (4-cycles are not present since that would mean
X,y were already pairing nodes). If z has a red edge to u, then
there must exist a black neighbor v; that is not connected to u;
and the red double-edge swap (v, v1), (u,y) = (v,y), (u,v1)
makes (u,y), (v,v1) blue, (y,v) black, (u,v1) red; and it
creates pairing nodes: x,y and u,v. The swap maintains the
number of components and increases k£ by 2, Fig. 28 bottom.

In all subcases for case 3, the two pairs of pairing nodes
can be handled sequentially x,y first (main case 2) without
changing u’s or v’s edges connecting to their neighbors except
x,y. Then the pairing nodes, u,v can be resolved by main case
2, thus decreasing k by 2=+2-4. [

o300 eroiome

Fig. 29. Two realizations with the same degree sequence and JDAM. There
is no JDAM preserving double-edge swap that would not use any self-loops
and the Cs swaps are not preserving JDAMs. This shows that the edges along
the directed 4-cycle must change their direction simultaneously.

APPENDIX E
ADDITIONAL D2K SIMULATIONS AND RESULTS

This Appendix supplements Section IV-B3 and IV-D of the
main paper.

A. D2K: Space of realizations

The space of simple realizations of directed degree se-
quences (D1K) is connected over double edge swaps, that
preserve (in and out) degrees, and triangular Cs swaps. If
the difference between two realization is the orientation of
a directed three-cycle, then the triangular Cs swap consists
of edge rewirings such that the orientation of the cycle is
reversed in a single step. The sufficiency of only these two
types of swap was shown in [43]. The necessity of these swaps
also carries over to (simple) directed 2K realizations. However,
Fig. 29 shows a counterexample (a directed 4-cycle) where the
classic swaps are not sufficient to transform one realization to
the other, thus requiring a more complex swap. We leave it as
an open question whether tight upper bounds can be derived
on the swap size for Directed 2K realizations.

There are possibly other cases where swaps must be more
complex and include more edges at once, for example larger
directed cycles with specific in/out degree order. In this paper,
we do not provide tight upper bounds on the number of self-
loops (in the directed graph representation) or the size of swaps
required, but we do emphasize that no multi-edges are required
and the number of self-loops are of course bounded by |N|.

B. List of Properties used in D2K simulations

Here we elaborate on the definition of the properties we
used to evaluate how well D2K performs.

1) Dyad Census counts the different configurations for
every pair of nodes: “mutual” - edges in both direction,
“asymmetric” - edge only in one direction and “null” -
no edge present.

2) Triad Census counts the non-isomorphic configuration
for every triplet of nodes. A complete list of configu-
rations and naming conventions can be found in [25].
Configurations are identified by three numbers (mutual,
asymmetric, and null counts) and a letter in case of
different non-isomorphic configuration with the same
number of edges. For example ”003” is a triplet of nodes
where none of the edges are present, 030C” is a directed
3-cycle and 300 is a triplet of nodes where all directed
edges are present.

3) Dyad-wise Shared Partners for pairs of nodes can be
defined in three ways for directed graphs: using inde-
pendent two-paths, using shared outgoing neighbors or

25

using shared incoming neighbors between pairs of nodes
[44]. Dyad-wise shared partners (DSP) count node pairs
by the number of shared partners appearing in a network.

4) Average Neighbor Degree captures the average degree
of a nodes’ neighbors, and we split this property for in
- and out degrees. Similarly, we refer to Expansion for
directed graphs as the ratio of the first hop and second
hop neighborhoods’ sizes going out, or coming in to
a node. These properties capture similar aspects of a
network, but expansion excludes any mutual edges or
edges between nodes in the first hop neighbors.

5) Betweenness Centrality CDF, Shortest Path Distribution,
K-Core Distribution, Eigenvalues

C. Additional D2K Simulation Results: beyond Twitter

In Section IV.D, we presented results from applying our
D2K framework to generate synthetic graphs that resemble a
Twitter dataset obtained from SNAP, which is a representative
and interesting real-world directed graph. In this section, we
present additional results for other real-world directed graphs
obtained from SNAP, namely: p2p-gnutella, Wiki-Vote, AS-
Caida. These were omitted from the main manuscript due to
lack of space.

TABLE IV
SUMMARY OF RESULTS: SHOWING IMPROVEMENTS BY FIXING MORE
PROPERTIES. LABELS: ”.” - NO IMPROVEMENT, ”-” - DECREASED
ACCURACY, ”+” - INCREASED ACCURACY, "EXACT” - MATCHED BY
DEFINITION.
Property UMAN—DIK | DIK—D2K | D2K—D2.IK
Degree Distribution Exact Exact Exact
Degree Correlation + Exact Exact
Dyad Census - + +
Triad Census + + +
Betweenness Centrality + . .
Shortest Path Distribution + + +
Eigenvalues + + +
DSP + + +
Expansion + + +
Avg. Neighbor degrees + + Exact
S. Connected Components .
K-Core Distribution + . +

Table IV gives an overview of how network properties are
affected by the different dK graph construction methods for
the other remaining networks. The Twitter network showcased
most of our general findings, but individually some of these
networks have characteristics that makes them different from
Twitter, e.g., p2p-GnutellaO8 does not contain any mutual
edges. The most interesting question is whether D2K or D2.1K
capture network properties more accurately. The answer is yes
in most cases, but it might not be a significant improvement
in targeting certain properties.

Local structures are generally better captured by D2K and
even more precisely for D2.1K, but global properties might not
be significantly affected depending on the original network.
However, this result is not surprising, since one of the main
assumptions of the dK-series is that it is not necessary to target
high d values for every graph [6].

Figures 30-38 show detailed results for additional graphs
(p2p-Gnutella08, Wiki-Vote, AS-Caida) in the same format as
we have seen in Section IV-D for Twitter.

Fig. 33. Results for Wiki-Vote graph: Directed Degree Distribution and Degree Correlation

In Degree Distribution D2.1K D2K
e -G | 1350 1350 1350
-
1 ~+ D2.1K+M 1200 1200 1200
= —e D2.1K |- 1050 1050 1050
& 1072 v D2K+M |- 900 900 900
g T oo o 10 750 oy 10t 750 oy 101 750
= 4 = DIK - 600 600 600
= pr + ok 450 450 450
UMAN [300 300 300
10 {150 150 150
. Lo 100 . o 10°+ 0
10° 100 107 101 107 10! 10° 10!
Degree k1 k1l k1
Out Degree Distribution DI1K DOK UMAN
Pa— | 10t 960
ot ’ - 1350 10 960
) |- 1200 840 840
N ' —4 D2.1K+M [1050 720 20
% 104 —— D2IK 200 600 600
] »- D2K+M oy 101 L750 oy a80
2 X — D2K leon 2 o 480
- -® DIK | aso 360 360
B » + DOK k300 0 240
10 UMAN L 150 120 120
107 o 10° T] 107 o
e w0 100 101 107 100 10° 10!
Degree K1 K1 K1
Fig. 30. Results for p2p-GnutellaO8 graph: Directed Degree Distribution and Degree Correlation
Dyad Census Triad Census
107 10 -G
- D2.1K+M
= = 10° - D2.1K
5 10° 4 I . — D2K+M
E g 10%4
z = D2K
& £ 100 - D1K
10% 4 — DOK
107 ' UMAN
mutual L null 0z1Cc 021D 021U 102 111D 111U 120C 120D 120U 201 210 300
Oyads Triads
Shortest Path Distribution k-core Betweenness centrality
1.0)
—-— G
B 0.8 -4+ DZ1K+M
T 107 —e— D2.1K
b w %] v D2K+M
) = Sl — D2K
& 107 - -m DIK
&
0.2 § DOK
UMAN
= 10t 0.0 P
10t o 2 8 10 10-% 10-% 10-4 10-2 10-2
Distance core index k Betweenness centrality
Fig. 31. Results for p2p-Gnutella08 graph: Dyad-, Triad Census, Shortest Path Distribution, K-core distribution, Betweenness Centrality
Average Neighbor In Degree Average Neighbor Out Degree Dyad-wise Shared Partners (Independent two-paths) Dyad-wise Shared Partners
10 s 1
8 @ 1084 —- G
s gs -4 D21K+M
<
H 2, . — D21K
- e w10 v D2K+M
& 6 2 3
= 23 3 —— D2K
2 5 10t
g @, - DIK
s & + Dok
H N 1 w UMAN
2 had
10 10t 10% 10° 10t o 1 2 3 4 5 o 5 10 15 20 25 30
in degree out degree #Shared partners #Shared partners
Expansion in Expansion out Dyad-wise Shared Partners (Outgoing) Eigenvalues of Adjmatrix
o g6 50
g_ a - G
: o ,{:.’ 5 45 =4 D2.1K+M
2 g 4 40 —o— D2.1K
2 . S 515 ¥ D2K+M
2 23 H “ DK
o .; s g0 -® DIK
E 4 K 25 + DOK
¢ o1 20 - UMAN
3 5
10° 10t 0 1 2 3 4 5 6 7 8 25 50 15 100 125 150 175 200
out degree #Shared partners Rank
Fig. 32. Results for p2p-GnutellaO8 graph: Expansion, Average Neighbor Degree, DSP and top 20 Eigenvalues
In Degree Distribution G D2.1K D2K
10t > 24 2.4 224
" =G 200 200 20,0
ey 3 -4 D2.1K+M 10 17.6 107 176 107 17.6
’ - D2.1K . 15.2 . 152 - 15.2
T’ v D2K+M ~ 28 128 ~ 128
3 - DK -~ 104 > 104 0.4
: -m DIK 10t 80 100 L. 100 o
+ DOK 5.6 56 5.6
UMAN 32 32 32
1051y , 10° o 10° 0.8 10° 0.8
10° 10 102 10% 10! 10? 100 10! 102 10% 10t 10?
Degree k1 K1 k1
Out D Distributi
ut Degree Distribution D1K 675 DoK UMAN
107 =G » §0.0 1120 1080
-+ DL1KeM 1024 52.5 960 260
7 — D21k 45.0 800 840
2] 720
8o v D2K+M s 10 640
£w o o o o 10 600
€ 104 -m DIK 104 25 480 430
+ DOK 320 360
107% UMAN 5.0 160 240
75 120
, ; . , 10° 0.0 o . o
10° 100 10 100 10° 101! 10° 10t 10
Degree K K1 K1

26

Dyad Census

Triad Census

107 -
- D2.1K+M
et = = D2.1K
s g m— D2K+M
& 10° g D2K
£ £ = D1K
m— DOK
107 I UMAN
mutual as! null OZIIC 021D 021U 030C 030T 102 111D 11u 120C 120D 120U 201 210 300
Dyads Triads
Shortest Path Distribution k-core Betweenness centrality
1.0 e
M Il
_ 10°4 0.8 W F -4 D2.1K+M
] 4 —e— D2.1K
2 0] ¥ ¥ DZK+M
5 ¥ +~— D2K
& '] -®- D1K
1
“ 10 024 ¥ +- DOK
UMAN
10° 4 - & a 0.0
g 0 20 a0 60 80 100 10-» 10~ 10-¢ 10 10~ 18- 107
Distance core index k Betweenness centrality
Fig. 34. Results for Wiki-Vote graph: Dyad-, Triad Census, Shortest Path Distribution, K-core distribution, Betweenness Centrality
Average Neighbor In Degree Average Neighbor Out Degree Dyad-wise Shared Partners two-paths) Dyad-wise Shared Partners
F ® 60 . - G
E £ o
o g L 1o w —4 D21K+M
g 3 -
z =50 v - 100 . —e D2.1K
o0 s = e 10 v D2K+M
32 5 a0] 5
s = 8 1l S o b
T By 10 102 -=- DIK
@ 5 + DOK
%20 + EEY 10° 100 UMAN
P H .
v T
100 v 102 10 100 10 100 0 4 60 8 10 120 140 0 0 4 60 8 10 120
in degree out degree #Shared partners #Shared partners.
Expansion in Expansion out Dyad-wise Shared Partners (Outs) Eigenvalues of Adjmatrix
] s "
a 2 60
280 g 108 40 -G
5 2 "o m -4 D2.1K+M
2 i o wd o — D21K
g% 2 £ 2" D2K+M
2 g 5 s N *
ER £ 8. . . —— DK
g el 1 £ - DIK
8 7) + Dok
920 20 1001 + 10
g S UMAN
= H ¢ -
. :
w o e o 10° 10 10? w [} 100 200 300 400 500 25 50 75 100 125 150 175 200
in degree out degree #Shared partners Rank
Fig. 35. Results for Wiki-Vote graph: Expansion, Average Neighbor Degree, DSP and top 20 Eigenvalues
In Degree Distribution
<] D2.1K D2K

107t - G | 1120 | 1120 | 1120
e -4 D2.1K+M 1024 960 100 . 1024 960
= —— D2.1K | 800 |-s00 | 800
& 107 ¥ DZK+M | 5
g) o 60 Leao o 640
£ 101 - Dk 100 L 480 10t L 480 10} - 980
= » 320 L 320 320

10-* + DOK

UMAN t ! - 180 - 160 ! ! - 180

10-% 100 o 100 Lo 10° La

10" 10t 108 10* 107 101 100 10° 107 100 10¢ 10*
10° 101 102 K1 K1 k1
Degree
Out Degree Distribution
D1K DOK UMAN
- - 1080 :

e . —=— G a8 10° _:gg 10 oo
e " -+ g;izﬂw 1074 | as0 | 3150 6%10° [5%
7 10 —— | 720 F2200 100 |- 2700
o 3 |
2 o ¥ DZK+M o G0 [2250 2o
S —— D2K 100 +as0 1800 - 1800
S 107 -=- DIK 360 1350 1350

e + DOK 240 900 +a00

UMAN ’ (120 450 450

1077 10° —,—,—! Lo 10° Lo 10° La

10° 10t 107 10° 10° 2% 103 % 10%106x10° 1ot 100 10!
10° 10! 107 107 k1 k1 k1
Degree
Fig. 36. Results for AS-Caida graph: Directed Degree Distribution and Degree Correlation
Dyad Census Triad Census
10
1021 - G
101 m— D2.1K4+M
177 z 10 = D2.1K
g 10e g 10¢ — D2K+M
] 3 m— D2K
g 2 104
* 105 = == D1K
107 — DOK
10+ 100 | UMAN
mutual asym null ooz 012 021C 0210 021U 030C 030T 102 110 111U 1z20C 1200 120U 201 210 300
Dyads Triads
Shortest Path Distribution k-core Bet centrality
10 | mmma
o4 ottt il ; -
_ B o8- * 4 -4 D2.1K+M
= =
LEE = —e— D2.1K
B = 0.6
2 & w ¥ D2K+M
% 0.2 = “ o4 “ b2K
= ; : -m- D1K
0.1 024 +- DOK
UMAN
0.0 0.0
10° 10! 0 50 100 150 250 300 350 400 10-* 10-7 10-% 10-* 10-* 10-* 10-%

Distance

core index k

Betweenness centrality

Fig. 37. Results for AS-Caida graph: Dyad-, Triad Census, Shortest Path Distribution, K-core distribution, Betweenness Centrality

27

Average Neighbor In Degree Average Neighbor Out Degree

80 o

e
AN
: :;ﬁ--‘“uh--m

10° 10

avg. neighbor in degree
avg. neighbor out degree
E 3
<
fd
n
.
Count
5 &

10 10° L 10 10

in degree out degree

T M
N

[\
“Eungs \
2 /Bﬁ » .l'-"n...!i‘““‘“

"
A

@
4

5
B

avg. ratio 1-hop vs 2-hep in
avg. ratio 1-hop vs 2-hop out
&

o

i I
\‘;u%\ 1
- -
W ¥ €104
] . X 3

)
™ L . hT!
“I

10°

28

Dyad-wise Shared Partners (Independent two-paths)

Dyad-wise Shared Partners (Incoming)

- G

-4 D2.1K+M

—+— D2.1K

¥ D2K+M
D2K

-m DIK
DOK
UMAN

M)

B0 1S

00 15
#Shared partners

3 s 100 150 200 250 o 5 s
#Shared partners
Dyad-wise Shared Partners (Outgoing)

Eigenvalues of Adjmatrix

- G

-4 D2.1K+M

e D2.1K

¥ D2K+M
D2K

-w- DIK
DOK
UMAN

10° 10t 10 100 10 102
in degree out degree

Fig. 38. Results for AS-Caida graph: Expansion, Average Neighbor Degree,

APPENDIX F
BALANCED REALIZATIONS FOR 2K+MINCC AND D2K

This appendix provides additional details skipped from
Section III-D and IV-C of the main paper.

In this section, we follow the notation from Czabarka et al.
[9]. A graph, G, has a node partition according to their degree
Vo to Vg, ... Vi is the set of nodes with degree 7. For every
Vi, set Aj(j) :== JDM(4,7)/|V;| and for i # j, A;(i) :
JDDM (i, j). Now define Vi, sq(v); for every v € V; as the
number of edges from v to nodes with degree ¢. A realization
is balanced if for all ¢,j pairs sg(v); € {|A4;()],[4;()]}
for all v € Vj. Identically it is balanced if the floor of the
difference from the average connectivity (defined by matrix
A) of every node is 0, formally we define C¢ the difference
from balanced for a node v to a degree group i as c¢g(v, i) :=
L[Adeg(v) (1) —8G(v)i]||; and for a degree group j as Cq(j) =
Zvevj P ca(v,1).

Balanced Degree Invariant realizations of JDMs always
exists as shown in [9]. Here we show that Lemma 4 and
Corollary 5 from [9] can be applied with minor modifications
to find balanced realizations of 2K with minimum number of
connected components or D2K.

Lemma 8. If Ju,v € V; : sg(u); < |4;@)] < sg(v);
or [A;(?)] handled similarly) for a simple graph, G , then
Jw,w" € V; : {(v,w), (v,w")} € E,{(u,w), (u,w)} ¢ E
and w,2w' # w; 32,2 € Vi,k #£ i or 2 € V2 €
Vi, k, k' # 1 {(u,2), (u,2")} € E,{(v,2),(v,2")} ¢ E
and z,z # v.

Proof. From the initial conditions follow that w,v € Vj,
deg(u) = deg(v) = i and sg(v); — sg(u); > 2. Since
the sum of sg(v) equals to 4 and every value is an (non-
negative), integer, in worst case (sg(v); — sg(u); = 2) there
Tk # i such that sg(v)g — sg(u)g = 2 or Ik, k' = i such that
Sg(’l))k — Sg(u)k =1 and Sg(v)k/ — Sg(’u,)k/ = 1.

It follows from the previous statement, that Jw,w’ € V;
such that {(v,w), (v,w")} € E,{(u,w),(u,w’)} ¢ E; and
Jz,2" € Vi, or 3z € Vi, 2’ € Vs such that {(u, z), (u,2)} €
E{(v,2), (v,2)} ¢ E.

We have to consider whether w,w’ # u and z,2’ # v: if
w = u, then 4 = j and (u,v) € E (¢ = v handled similarly).
By removing (u,v) edge, the difference s¢(v); — sg(u); re-
mains the same, which means that there exists w, w’ # u. [

0 100 300 400 25 50 75 100 125 150 175 200
Rank

200
#Shared partners

DSP and top 20 Eigenvalues

We just showed, that Lemma 4 in [9] has the option for
both u, v to choose between two nodes for the RSO.

Theorem 9. If C(j) # 0, there are nodes u,v € V; and
an RSO vw,uz — vz,uw transforming G into G' such that
Ce(i) < Cali); VI # 5,C5(1) = Ca(l) and |CC(G")| <
[CC(@)].

Proof. Now that there are at least two neighbors for both u, v
two use in an RSO while applying Lemma 4 [9], we can
identify cases to maintain number of connected components,
based on the path between u,v and w, z:

Case 1. There is no path between u, v, i.e.,, u,v are in dif-
ferent connected components. Any RSO will not increase the
number of connected components, thus |CC(G")| < CC(G))|.

Case 2. There is a path v — w — p — 2z — u (where p is a
simple path between w, z). An RSO using w, z would return
a new path v — z — p — w — u thus |CC(G")| = CC(G)|.

Case 3. There is a path w — v — p — u — z (where p is a
simple path between v, u). An RSO using w, z would return
anew path z —v — p — u — w thus |[CC(G")| = CC(G).

Case 4. There is a path v —w—p—u—z (where p is a simple
path between w,u). An RSO using w, z would return new
paths v — z,w — p — w. If there are no other paths connecting
these subgraphs, then |CC(G')| + 1 = CC(G)|. However,
using our previous observation, we can use w’ that would lead
to a path w’ — v —w — p—u — z. This is in fact Case 3 using
w’ instead of w. O

These extensions to Lemma 4 do not change Corollary 5 in
[9]; which means that application of Corollary 5 will result in
the necessary sequences to return balanced realizations without
increasing number of connected components. If the input G
was already a MinCC realization, then the resulting G’ will
be both MinCC and balanced realization.

Next we use the same observation to construct balanced
realizations for D2K graphs as well.

Lemma 10. If C(j) # O, then there are nodes u,v € V; and
an RSO vw,uz — vz,uw transforming G into G' such that
CL(j) < Cq(j) and V1 # §,CL(1) = Cg(l) if every node
participates in exactly one non-chord.

Proof. Now that there are at least two neighbors for both u, v

two use in an RSO while applying Lemma 4 [9], we can find
an RSO without using non-chords. Since u has exactly one

non-chord, it can pick (at least) one of w,w’ and similarly v
can pick one of z, 2’ for an RSO. O

As before, we can apply Lemma 4 and Corollary 5 from [9]
in combination with the previous lemma to produce a balanced
realizations for any realizable D2K inputs.

29

