
A System for Crowdsourcing Passive Mobile Network Measurements
Emmanouil Alimpertis

Ph.D. Student, UC Irvine
Athina Markopoulou

Associate Prof., UC Irvine

Abstract
In this poster, we build on top of the AntMonitor

system and we extend it to add a new module for pas-
sive monitoring network performance on mobile devices
(w/o middle server). We show that this design is effi-
cient yet powerful, in terms of the performance achieved
(compared to alternatives today), realistic measurements
(passive monitoring of actual traffic on devices of real
end-users), richness of information (fine-grained mea-
surements and rich contextual information available on
the devices). We present the system design, a prelimi-
nary evaluation, and example applications.

1 Introduction
Crowdsourcing wireless (both cellular and WiFi) net-
work performance measurements (e.g. cellular received
signal strength, RSS, WiFi RSS, TCP/IP throughput etc.)
can enable a vast number of network monitoring appli-
cations (e.g. mobile coverage maps and localization [1]).
It can be of great interest to individual users, network
operators (who often outsource these measurements to
third parties) and researchers and can be part of appli-
cations and solutions for next generation wireless net-
works. In this poster, we propose a system for network
performance measurements from the vantage point of
mobile devices. It passively monitors network proper-
ties and activity only on the device (without redirecting
traffic to a middle server), runs as a user-space app in the
background seamless to the user, and provides a power-
ful tool for crowdsourcing such measurements from the
mobile devices to a LogServer for processing.

Relevant prior art can be categorized in passive
or active monitoring either at network infrastructure
or network edge. Monitoring at network infrastruc-
ture [2] offer granular information in large scale, how-
ever, it misses the network edge. Passive measurements
(e.g.OpenSignal) at the mobile capture granular perfor-
mance metrics of the wireless link but they do not record
detailed stats per TCP/IP flow. Finally, active measure-
ments (e.g. throughput or ping with Speedtest.net)
introduce data overhead and must be triggered by the
users. Most closely related to our work is Mobilyzer [3],
which offers a library with controllable active and pas-
sive measurements. However, it offers neither passive
throughput measurements nor monitoring per each dis-
tinct TCP/IP flow, which are possible with our work
along with a whole range of fine-grained metrics.

(a) Android App

Passive Performance Measurements
Radio Layer Monitor Database ORM

(i) Cellular Monitor

(ii) WiFi Monitor

(iii) Location Monitor

NetworkPerformanceLoggingService

(iv) Periodic Monitor

 GSON
 Library

JSON Upload

PerformanceLogs

 MeasurementsToJson

measurements.json
cells.jsonwifiAPs.json

JsonFiles

GreenDAO
/SQLiteDB

Packets Interception
UploadService

MongoDB
Geospatial

Packet Queue

TCP/IP Layer Monitoring

i.SIGNAL MAPS
ii.CHARTS
iii. ANALYSIS

LogServer

pcapng

AntMonitor App

 MySQL
 TCP/IP

(b) Network performance monitoring system architecture.

Figure 1: Network performance monitoring is built as part of Ant-
Monitor [4] and it can be a powerful tool for crowdsourcing rich, fine-grained,
large-scale, network performance measurements.

2 Network Monitoring System
This work builds on and extends AntMonitor1 [4] – an
Android app we have previously developed for captur-
ing and analyzing network traffic in and out of mobile
devices. AntMonitor is VPN-based and thus can be in-
stalled without rooting the phone, and run in the back-
ground. In prior work [4], we focused on the system de-
sign of AntMonitor, we demonstrated its excellent per-
formance in terms of throughput, battery consumption
and other resource usage, and we focused on the particu-
lar application of privacy leaks detection; we refer to [4]
for details. This poster extends AntMonitor by adding
a new module to perform network performance measure-
ments, as shown in Fig. 1, thus it inherits its good system
properties mentioned (user-space app, seamless user ex-
perience, on-device monitoring without redirecting traf-
fic to a server), which makes it ideal for crowdsourcing.

Collecting Measurements on the Device: First, since
AntMonitor can intercept and analyze in real-time ev-
ery packet in and out of a mobile’s networks interfaces,
it is naturally positioned to perform passive TCP/IP-layer
measurements. For example, we compute throughput per
flow by counting the number of bytes per timestamp.
Capturing and logging packets and computing TCP/IP
flow statistics is achieved in real-time with minimal per-
formance impact [4]. Second, we record the radio layer
and network performance metrics obtained from An-
droid APIs including but not limited to: cellular & WiFi
RSS, network carrier, radio access technology (RAT),
frequency bands use in WiFi etc. Measurements’ record-
ing is triggered by Android’s notifications/callbacks for
network and location changes (e.g. RSS or cell status
change), therefore, monitoring comes with minimal bat-
tery overhead. Third, we record rich contextual informa-

1The AntMonitor Project: antmonitor.calit2.uci.edu

Cellular Throughput

Cellular Throughput Wi-Fi Throughput

1

2

1

2 2

LTE RSRP Map
0 - 1 Mbps
1 - 5 Mbps
5 - 10 Mbps
10 - 15 Mbps
15 - 20 Mbps
20 - 25 Mbps
> 25 Mbps

Throughput IndexT-Mobile

All Carriers

RSRP is -80 dBm

(a) T-Mobile LTE Signal Strenth, Wi-Fi & Cellular Throughput Maps

Figure 2: Performance maps from the university campus. Low RSRP (loc.
1) does not necessarily mean low cellular throughput (for the same carrier). Vi-
sualizaitons using open source libraries leaflet.js and D3.js

0:00
2:00

4:00
6:00

8:00
10:00

12:00

14:00

16:00

18:00

20:00

22:00

0

5

10

15

20

25

30

35

M
B

 U
sa

g
e
 (

D
o
w

n
lo

a
d
)

Wi-Fi

Cellular

(a) Week Typical Day

0:00
2:00

4:00
6:00

8:00
10:00

12:00

14:00

16:00

18:00

20:00

22:00

0

5

10

15

20

25

30

35

M
B

 U
sa

g
e
 (

D
o
w

n
lo

a
d
)

Wi-Fi

Cellular

(b) Weekend Typical Day

Figure 3: Single user’s Pattern: #MB downloaded, averaged over all (a)
week or (b) weekend days (one user for one month). Daily pattern differ between
week and weekend.

tion at the time of the measurement, including: location
(Google Location API provides mechanisms for low en-
ergy footprint), timestamp, and apps running.

Storing, Uploading and Processing Measurements:
The measurements are saved locally in a SQLite database
(DB) by utilizing an object-relational mapping (ORM) li-
brary. ORM is an middleware which automatically maps
runtime Java objects to Sqlite relational tables, thus pro-
vides easy and efficient data manipulation, without com-
plex SQL statements. The recorded measurements are
put in Javascript Object Notation (JSON) format2 (see
Fig. 1) and are uploaded on the LogServer (per user’s
request or when the phone is charging and on WiFi). We
use noSQL DB (MongoDB) because it scales better than
traditional database systems, allows schema-less storage
and MongoDB particularly supports spatio-temporal op-
erations. Off-line processing and visualization (e.g. RSS
maps) are provided at the LogServer. Please note that
the LogServer is used only for storing measurements
and the collection is 100% done on the device.

3 Preliminary Results
Performance: First, we utilize our module to compute
passively the smartphone’s throughput and we compare it
to a state-of-the-art active monitoring tool (Speedtest).
Table 1 shows that the values are very close, but our
passive approach does not incur any data overhead. Re-
sources usage by these two methods is shown in Table 2.

2A JSON payload example is: {”cellID”:141705489, ”rat”:”LTE”,
”carrier”: ”AT&T”, ”location”: { ”lat”:33.644794, ”lng”:−117.82986
· · · }, ”lteInfo” : {”rsrp”:-94, · · · }, ”wifiInfo”: { ”SSID”: ”10:fe:· · ·”,
”rssi”:-49, ”freq”:2412, · · · }, · · ·}.

Exp # 1 2 3 4 5 6 7

AM: W=5 21.24 29.26 22.83 27.01 30.75 26.84 26.14
Speedtest 19.96 28.42 22.39 28.74 31.66 26.98 27.22

Table 1: Throughput (Download Mbps): Active (using Speedtest) vs
Passive (using AntMonitor: AM) measurements. First, we ran multiple
Speedtests, with 5 min gaps, from the same location, and we list the throughput
mentioned by Speedtest. Second, we computed the throughput using AntMon-
itor logs, over a window of 5 sec. Our approach is close to Speedtest but does
not incur any measurement overhead. For a fair comparison in this table, we pas-
sively monitored the Speedtest packets using AntMonitor. In the wild, throughput
computations can be made by counting the bytes of actual traffic sent over time.

Metric Data Overhead Memory CPU Battery

Speedtest 50 MB 116 MB 14.7% −0.5%
AntMonitor 0 MB 134MB 43.4% −0.7%

Table 2: Resources Utilization for AntMonitor and Speedtest per Exp.

Applications: Second, in order to showcase the applica-
tions and versatility of our tool, we report measurements
collected on our campus (for a period of 8 months and
among approx. 10 people in our group) including: ref-
erence signal received power (RSRP) for LTE network
and device throughput (both WiFi and cellular). Fig. 2(a)
shows the LTE RSRP for one cellular provider on UCI
campus, for one month. LTE reception has large spatial
variations and the RSRP would be lower than the same
link budget RSS in GSM, because they are measured in
different bandwidth range. Fig. 2(a) also reports the av-
erage throughput of WiFi and LTE networks and com-
pares it to LTE RSRP. Interestingly, we observe that low
RSRP does not necessarily result in low throughput. Fur-
thermore, Fig. 3 shows the data (MB) used by one user
throughout a typical day per network (WiFi or Cellular).
AntMonitor’s fine granularity (per flow, per app, per lo-
cation, over time etc.) can enable a vast number of moni-
toring applications, troubleshooting, SDN operations etc.
Due to lack of space, we omit other available metrics’ vi-
sualizations such as WiFi’s RSS and frequency channel
use per region.

Prototype. A prototype of the system, as shown in
Fig. 1(a), is currently in alpha testing3. As part of on-
going work, we are planning to include our monitoring
module on beta test in AntMonitor on GooglePlay (cur-
rently focuses on privacy leaks), and to collect and ana-
lyze campus-wide measurements.

References
[1] E. Alimpertis, N. Fasarakis-Hilliard, and A. Bletsas. “Community

RF Sensing for Source Localization”. IEEE Wireless Commun.
Lett., 3(4):393–396, Aug 2014.

[2] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigas-
cope: A Stream Database for Network Applications. In Proc. of
the ACM SIGMOD, pages 647–651, June 2003.

[3] A. Nikravesh, H. Yao, S. Xu, D. Choffnes, and Z. M. Mao. Mobi-
lyzer: An Open Platform for Controllable Mobile Network Mea-
surements. In Proc. of the 13th ACM MobiSys, pages 389–404.
May 2015.

[4] A. Shuba, A. Le, E. Alimpertis, M. Gjoka, A. Markopoulou.
AntMonitor: System and Applications. arXiv:1611.04268.

3zeus.calit2.uci.edu:8080/manos/apk.php

2

