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MOBILE IS KING

Figure 1: Exponential Global Mo-
bile Data Traffic Growth, Source1.

Figure 2: More People with Mobile than
Running Water, Source1.

Figure 3: However, all of us have experienced: Poor Performance and Failed Calls.

1. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017-2022

SIGNAL STRENGTH MAPS OVERVIEW

• Mobile Signal (Coverage) Maps by Users’ Mobiles as Sensors!

• XLarge Scale, XLong Periods.

• However: Measurements are 7sparse, 7inadequate, 7expensive.

• Cellular Providers Signal Maps Data:

1. Themselves (wardriving, privacy concerns).

2. Mobile Analytics Companies ($$), e.g., OpenSignal, Tutela, RootMetrics.

Figure 4: T-Mobile LTE Map of UCI, Collected by Ourselves [1].

GOALS AND CONTRIBUTIONS

Goal: How to Predict missing values in space, time and other features?
Benefits and Contributions: Cheaper & More Accurate Maps for:

1. Users: Find Best Network.
2. Cellular Carriers:

(a) Monitor their and competitors’ Cellular Network.

(b) Network Management and Upgrades (e.g., Deploy more cells).

(c) SDN/SON e.g., network selection etc.

3. Mobile analytics Companies: Reduce Operational Costs (e.g., AWS cost).

SIGNAL STRENGTH MAPS PRIOR WORK

Features Setup: Environment, Scale and Data

Spatial Time
Device

Network
Environment

Agnostic City-Wide
No Expensive

LiDar Data
Log-Distance
Path-Loss
(LDPL) [2]

7 7 7

COST-231/
WINNER I-II/
Ray Tracing

7 7 7

Geostatistics
SpecSense [3] 7 7 7 7

BCS [4] 7 7 7

RAIK-DNNs [5] 7 7 7 7

Our Work:
Random Forests

Table 1: Signal Maps Approaches Compared with Our Work.

RANDOM FORESTS (RFs) LTE RSRP PREDICTION

• LDPL RSRP modeling : P (t)
cID

(
~lj

)
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(t)
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)
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j .

• RSRP Prediction: P̂ ∼ N (RFsµ(x), σ
2
x): Pj target, xj feature vector.

• Random Forests (RFs) are an ensemble of multiple decision trees.

• RSRP Predictors:

1. RFsx,y : Spatial Only (localization in [6]).

2. RFsx,y,t: Spatiotemporal Features.

3. RFsall: All Features.

• For each measurement Pj we consider the full set of features:

• Features xj : xfull
j = (lxj , l

y
j , d, h, cID, dev, out, ||~lBS −~lj ||2, freqdl)

1. Location, (lxj , l
y
j ).

2. Time Features, tj = (d, h). RSRP Variance Is Time Dependent.

3. Cell-ID, cID. RSRP is defined per serving cell.

4. Device Hardware Type, dev. RSRP calculation differs per device/hardware differences.

5. Downlink Carrier Frequency, freqdl. Radio propagation depends on freqdl.

6. Outdoors, out. From Android’s API GPS velocity.

7. Distance between UE – BS, ||~lBS −~lj ||2.

Why RFs for Data-Driven Prediction?

1. RFs inherently considers all features x; Geostatistics [3] only spatial.

2. RFs Automatically identifies areas with spatially (and temporal) correlated
RSRP (similar wireless propagation characteristics).
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Figure 5: Example of decision boundaries chosen by RFsx,y for Campus cell x306.

DATASETS
Dataset Period Areas Type of Measurements Characteristics Source

Campus
02/10/17 -
06/18/17

Univ. Campus
Area u 3km2

LTE KPIs: RSRP, [RSRQ].
Context: GPS Location, timestamp, dev, cid.
Features: x =

(
lxj , l

y
j , d, h, dev, out, ||~lBS −~lj ||2

)
No. Cells = 25
No. Meas u 180K
Density ( N

m2 )
Per Cell: 0.01 - 0.66 (Table 3)
Overall Density: 0.06

Ourselves [1]

NYC & LA 09/01/17-
11/30/17

NYC Metropolitan
Area u 300km2 LTE KPIs: RSRP, [RSRQ, CQI].

Context: GPS Location, timestamp, dev, cid. EARFCN.
Features:x =

(
lxj , l

y
j , d, h, cid, dev, out, ||~lBS −~lj ||2, freqdl

)
No. Meas NYC u 4.2M
No. Cells NYC u 88k

Density NYC-all u 0.014 N
m2

Mobile
Analytics
Company

LA metropolitan
Area u 1600km2

No. Meas LA u 6.7M
No. Cells LA u 111K
Density LA-all u 0.0042 N

m2

Table 2: Overview of Signal Maps Datasets used in this study

NYC Manhattan
Midtown (Fig.8)

NYC
E. Brooklyn

LA
Southern

MN-Carrier MNC-1 MNC-1 MNC-2
No. Measurements u 63K u 104K u 20K
Area km2 1.8km2 44.8 km2 220 km2

Data Density N
m2 u 0.035 u 0.002 u 0.0001

No. Cells |C| 429 721 353
Cell Density |C|

km2 238.3 16.1 1.6

Table 3: NYC and LA datasets: LTE TAs
Examples.

DATASETS EXAMPLES AND FEATURE IMPORTANCE

MNCarrier-1 LTE 
RSRP (dBm)
TAC: xx640
Cell-ID: x204

RSRP 
(dBm) 
Legend

250m

Figure 6: Campus example cell x204: high density (0.66),
low dispersion (325).

MNCarrier-1 LTE 
RSRP (dBm)
TAC: xx640
Cell-ID: x355

RSRP 
(dBm) 
Legend

250 m

Figure 7: Campus: example cell x355: small density
(0.12) more dispersed data (573).

Figure 8: NYC:
Manhatta Mid-
townn LTE TA

Figure 9: NYC: zooming in Manhattan Midtown (Time
Square) for some of the available cells (Different color per
cID).

Feature Importance

d h ly lx ||~lBS −~lj||2dev out

RFs Features
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(1) Model – Based
(Wireless Propagation) (a) LDPL

(b) LDPL-knn
(Heteregoneous nj)

(2) Geospatial
Interpolation

(a) OK
Ordinary Kriging

(b) OKD
OK Detrening

(3) Random Forests (RFs) (a) RFsx,y (b) RFsx,y,t (c) RFsall

Table 4: Evaluation: Methods For Comparison

RFs Setup Model Per LTE TA Model per cID
RFs hyperparameters ntrees = {20, 100} maxdepth = {20, 30}

Table 5: RFs Setup and Hyperparameters.

COMPARING PREDICTORS PER CELL

Cell Characteristics RMSE (dB)

cID N N
sq m2 SDD E[P ] σ2 LDPL

hom

LDPL

kNN
OK OKD

RFs
x,y

RFs
x,y,t

RFs

all

x914 3215 0.007 791 -94.5 96.3 13.3 3.47 3.59 2.28 3.43 1.71 1.67
x034 1564 0.010 441 -101.2 337.5 19.5 7.82 7.44 5.12 7.56 3.82 3.84
x901 16051 0.162 355 -107.9 82.3 8.9 4.60 4.72 3.04 4.54 1.73 1.66
x204 55566 0.666 325 -96.0 23.9 6.9 3.84 3.85 2.99 3.83 2.30 2.27
x922 3996 0.107 218 -102.7 29.5 5.6 3.1 3.16 2.01 3.10 1.92 1.82
x902 34193 0.187 481 -111.5 8.1 21.0 2.60 2.47 1.64 2.50 1.37 1.37

Cell Characteristics RMSE (dB)

cID N N
sq m2 SDD E[P ] σ2 LDPL

hom

LDPL

kNN
OK OKD

RFs
x,y

RFs
x,y,t

RFs

all

x470 7699 0.034 533 -107.3 16.9 24.8 3.64 2.73 1.87 2.78 1.26 1.26
x915 4733 0.042 376 -110.6 203.9 14.3 7.54 7.39 4.25 7.31 3.29 3.15
x808 12153 0.035 666 -105.1 7.7 4.40 2.41 2.42 1.60 2.34 1.75 1.59
x460 4077 0.040 361 -88.0 32.8 11.2 2.35 2.28 1.56 2.31 1.84 1.84
x306 4076 0.011 701 -99.2 133.3 18.3 4.85 4.30 2.80 3.94 3.1 3.06
x355 30084 0.116 573 -94.3 42.6 9.3 2.42 2.31 1.85 2.26 1.79 1.79

UCI NETWORKING GROUP WEBPAGE

Networking Group@UCI: athinagroup.eng.uci.edu

MODEL GRANULARITY: cID vs. LTE TA
Question: At What Level of Granularity Should we Train Our RFs Models?
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Figure 10: MNC-1, Man-
hattan Midtown (urban).
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Figure 11: MNC-1, East
Brooklyn (suburban)
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Figure 12: MNC-2, South-
ern LA (suburban).

NUMBER OF MEASUREMENTS vs. RMSE TRADE-OFF
Tradeoffs: (1) 80% Less Data: Same Accuracy.

(2) Same Data 17% Relative Error Reduction (or 1dB error reduction).
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Figure 13: Campus dataset: RMSE vs. Training Size. Our methodology (RFs with more than spatial
features, i.e., RFsx,y,t, RFsall) significantly improves the RMSE-cost tradeoff: it can reduce RMSE by
17% for the same number of measurements compared to state-of-the-art data-driven predictors(OKD);
or it can achieve the lowest error possible by OKD (' 2.8dB) with 10% instead of 90% (and 80% reduc-
tion) of the measurements.

CITY-WIDE MAPS: NYC and LA datasets EXPERIMENTS
CDFs for RMSE per cID for two different LTE TA, for the same major MNC-1.
Benefits: (1) RFsall offer 2dB gain over the baselines for the 90th percentile.

(2) 2dB for 1-bar in voLTE means 1-5% call drop rate [7]
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Figure 14: MNC-1, NYC Manhattan
Midtown (urban).
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Figure 15: MNC-1, LA Southern (Sub-
urb)
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