
LTE, UCI-Mobile

		Featu	res	Setup: Environment, Scale and Data					
	Spatial	Time	Device	Environment	City-Wide	No Expensive			
	Spatial		Network	Agnostic		LiDar Data			
Log-Distance									
Path-Loss		X	×	\checkmark	×	\checkmark			
(<i>LDPL</i>) [2]									
COST-231/									
WINNER I-II/		X		×	×				
Ray Tracing									
Geostatistics		X	v	~	V	\checkmark			
SpecSense [3]			^	^	×				
BCS [4]			×	×	×	\checkmark			
RAIK-DNNs [5]	\checkmark	×	×	×	\checkmark	×			
Our Work:									
Random Forests				~					

 Table 1: Signal Maps Approaches Compared with Our Work.

CITY-WIDE SIGNAL STRENGTH MAPS: PREDICTION WITH RANDOM FORESTS E. ALIMPERTIS^{*}, A. MARKOPOULOU^{*}, C. T. BUTTS^{*}, K. PSOUNIS⁺

RANDOM FORESTS (RFs) LTE RSRP PREDICTION	
• LDPL RSRP modeling : $P_{cID}^{(t)}\left(\vec{l_j}\right) = P_0^{(t)} - 10n_j \log_{10}\left(\vec{l_{BS}} - \vec{l_j} _2/d_0\right) + w_j^{(t)}$.	1. F
• RSRP Prediction: $\widehat{P} \sim \mathcal{N}(RFs_{\mu}(\mathbf{x}), \sigma_{\mathbf{x}}^2)$: P_j target, \mathbf{x}_j feature vector.	2. F
• Random Forests (RFs) are an ensemble of multiple decision trees.	R
• RSRP Predictors:	(
 RFs_{x,y}: Spatial Only (localization in [6]). RFs_{x,y,t}: Spatiotemporal Features. RFs_{all}: All Features. 	
• For each measurement P_j we consider the full set of features:	(deg.)
• Features \mathbf{x}_j : $\mathbf{x}_j^{\text{full}} = (l_j^x, l_j^y, d, h, cID, dev, out, \vec{l}_{BS} - \vec{l}_j _2, freq_{dl})$ 1. Location, (l_j^x, l_j^y) .	Latitude
2. Time Features, $\mathbf{t_j} = (d, h)$. RSRP Variance Is Time Dependent.	
3. Cell-ID , <i>cID</i> . RSRP is defined per serving cell.	(
4. Device Hardware Type, dev . RSRP calculation differs per device/hardware differences.	(
5. Downlink Carrier Frequency, $freq_{dl}$. Radio propagation depends on $freq_{dl}$.	
6. Outdoors , <i>out</i> . From Android's API GPS velocity.	

	Cell Characteristics					RMSE (dB)						
cID	N	$\frac{N}{\operatorname{sq} m^2}$	SDD	$\mathbb{E}[P]$	σ^2	LDPL hom	LDPL kNN	OK	OKD		$RFs \ x,y,t$	RFs all
x914	3215	0.007	791	-94.5	96.3	13.3	3.47	3.59	2.28	3.43	1.71	1.67
x034	1564	0.010	441	-101.2	337.5	19.5	7.82	7.44	5.12	7.56	3.82	3.84
x901	16051	0.162	355	-107.9	82.3	8.9	4.60	4.72	3.04	4.54	1.73	1.66
x204	55566	0.666	325	-96.0	23.9	6.9	3.84	3.85	2.99	3.83	2.30	2.27
x922	3996	0.107	218	-102.7	29.5	5.6	3.1	3.16	2.01	3.10	1.92	1.82
x902	34193	0.187	481	-111.5	8.1	21.0	2.60	2.47	1.64	2.50	1.37	1.37

UCI NETWORKING GROUP WEBPAGE

Networking Group@UCI: athinagroup.eng.uci.edu

UNIVERSITY OF CALIFORNIA, IRVINE * UNIV. OF SOUTHERN CALIFORNIA+

lowship program.

This work was supported by NSF Awards 1649372, 1526736, 1444060; as well as by Networked Systems and CPCC at UC Irvine and the Broadcom Foundation Fel-