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APPENDIX A
Due to lack of space, we provide additional results in this
Appendix, which is provided as supplemental material to the
revisions.

A.1 Scenario 6: Interpreting SVM vs. DT
Setup Scenario 6. We use the following setup from Table 3:
Dataset: NoMoAds. Users: None. Classifier Granularity: Gen-
eral. Models: Centralized SVM vs. DT. Tasks: PII exposure.
Prior work chose DT over other models partially because of
their interpretability. In our context, these models learn similar
separation of our datasets, which we demonstrate by (1) observing
the most important coefficients in SVM, (2) by knowledge transfer
from SVM to DT. The goal here is to compare SVM to DT in terms
of their interpretability.

Fig. 20: Top 10 negative and positive coefficients and the correspond-
ing features obtained from Centralized SVM.

(a) Decision Tree (DT) trained on its own.

(b) First train SVM, then transfer knowledge to DT.

Fig. 21: Interpretability of DT vs. SVM in Setup 5.

Results Scenario 6. Fig. 20 shows the ten most important
negative and positive coefficients and their corresponding features
for our Centralized SVM. In order to distinguish important fea-
tures, we use the model’s coefficients, where the positive ones
correspond to the features whose presence leads to positive labels

and the negative coefficients correspond to features responsible for
predicting label 0 (e.g., No PII detected). This is not a one-to-one
mapping of important features between SVM and DT due to their
internal representation of features. However, we observe certain
keys that are responsible for PII exposures such as “gaid”, that
also appear in the corresponding DT.

Fig. 21(b) shows the DT after knowledge transfer from SVM.
To perform knowledge transfer from SVM to DT, we first split the
data into 40% for training SVM, another 40% for training a DT,
which is labeled with predictions from the aforementioned SVM.
The remaining 20% of the data is used for testing. This is one
way to leverage the interpretability of DTs via knowledge transfer
from SVM. In Fig. 21(a), we show a DT which was trained with
NoMoAds for PII prediction, while in Fig. 21(b), we show the
DT after knowledge transfer from SVM. We observe that both
DTs, at least at the top levels, have similar important features and
thus, capture similar patterns. The original DT and SVM reached
F1 score = 0.95 and the after knowledge transfer DT reached
F1 score = 0.94 on the same test data. This is only a minor F1 score
loss during knowledge transfer.

The most notable difference between the trees in Fig. 21 is
the lack of a large branch that only predicts label 0, which is the
result of how the original tree unsuccessfully attempts to separate
data. However, the DT after the knowledge transfer is oblivious to
this error, since the SVM most likely suffers from the same issue
as the original DT. Such errors propagating from the SVM make
the DT after the knowledge transfer smaller (269 vs. 141 nodes)
than the original DT. Please refer to the appendix of the extended
version of this work [40] for full pictures of the above DTs.

A.2 Additional Results for Scenario 2: Comparison of
Training Time.
This section of the Appendix provides additional results extending
Sec. 5.2.

Fig. 22: Results 2c. Comparison of average (from 5 runs) training
time for Centralized models with NoMoAds data using HTTP Keys
and Federated SVM with 20 synthetic users for both prediction tasks.

Results 2c: Training Time. Fig. 22 depicts the average
training time (from 5 runs) of the baseline centralized models
with NoMoAds data for both prediction tasks in comparison to
Federated SVM with 20 even synthetic users.7 To measure the
time for the Federated models, we set the same target F1 score
as before (0.95 for PII and 0.85 for Ads) and we report the total

7. Time was measured on a machine with Intel(R) Xeon(R) CPU E5-2623
v3 @ 3.00GHz and 62GB RAM. The reported train times are on models with
default parameters as selected in scikit-learn [68], except for Random Forest
(RF) which we limit to 25 estimators instead of the default 100 estimators.
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training time from all rounds required until the convergence with
E=1, B=10, C=1.0. We define the Federated training time as:
tfed = max(tlocal) + taggr and thus, it depends on the worst
case local train time. The aggregation time on the server side,
taggr, is negligible as it takes only 40 microseconds. Overall, the
SVM with SGD is comparable to DT and RF and the Federated
SVM is comparable to the centralized models; PII task requires 3
rounds (each round taking approximately 145 seconds), while for
the Ads task one round was sufficient resulting in faster training.

Fig. 23: Comparison of average training time for all Centralized
models from Table 4 with NoMoAds data using HTTP Keys and
Federated SVM with 20 synthetic users for both prediction tasks.

A.3 Additional Results on the Benefit of Federation
This section of the Appendix extends Sec. 5.3 using Setup 3b with
100 synthetic users and uneven IID split of data. It continues the
“Results 4e” from Section 5.4, “Benefit of Crowdsourcing”, but
considers 100 synthetic users instead of 10 real non-IID users
and it compares the performance of Federated to Centralized
and Local models. The goal is to further demonstrate the benefit
of moving away from locally trained models, to crowdsourced
models, especially Federated (which essentially performs as well
as a Centralized model).

Fig. 24 shows the results for this scenario. We compare the
F1 score on each user’s test data for crowdsourced models: Cen-
tralized (their training data was shared with a server) and Federa-
ted (only model parameters were shared), and their corresponding
Local models (they shared nothing). Fig. 24(a) shows the F1 score
achieved from Federated, Centralized and locally trained models
for each of the 100 users when tested on each user’s test data. Fig.
24(b) shows the empirical CDF of the difference between the F1-
score of Federated and Centralized models and between the Fe-
derated and Local models. We make two observations by looking
at Fig. 24(b). First, the Federated achieves similar F1 score to the
Centralized model for 90% of the users, except for a few users,
that Centralized performs slightly better. Second, the Federated
model performs better than the corresponding Local models: for
80% of users the Federated F1 score reaches an increase up to
0.2, compared to the Local model, and for some users it is almost
0.4, which is significant. In summary, all users benefit from the use
of crowdsourcing, i.e., there are positive differences in F1 score
for (Federated-Local), but at different degrees.

A.4 Additional Results on Threat Setup 6b.
This section of the Appendix provides additional results extending
Section 6.1 on Threat Setup 6b. Fig. 25 shows the CDFs of per-
domain prediction with HTTP Keys and Recon Words. Fig. 26

(a) Raw values of F1 score of Federated, Centralized and Local
models when tested on each user’s test data.

(b) Empirical cumulative distribution function (CDF) of the
differences of F1 scores for (Federated� Local) vs. (Federated
� Centralized).

Fig. 24: Comparison of Local vs. Federated vs. Centralized mod-
els when tested on each of the 100 uneven synthetic users with
AntShield data. Federated F1 score is comparable to Centralized
and both perform better (positive difference in F1) than the corre-
sponding Local models. All users benefit from the crowdsourced
models due to IID nature of the data, but at a different degree: the
increase in F1 can be up to 0.4, with 80% of the users up to 0.2.

shows the per-domain F1 score separating the ATS from non-ATS
domains and comparing the performance with HTTP Keys and
Recon Words for all 105 domains. Fig. 27 shows the results for a
zoomed-in version of the top 30 domains (sorted alphabetically).

Fig. 25: Empirical cumulative distribution function (CDF) for per-
domain F1 score with HTTP Keys compared to Recon Words.
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(a) Per-domain F1 score with HTTP Keys

(b) Per-domain F1 score with Recon Words

Fig. 26: Comparison of per-domain prediction with SVM and two feature spaces: Recon Words and HTTP Keys for all 105 domains.
“Advertising and Tracking” (ATS domains), marked with “o”, are usually contacted by third party libraries used by mobile apps, and are thus
less sensitive. “Other” (non-ATS) domains, marked with “x”, reflect the domains the user actually intended to visit and are more sensitive.

(a) Per-domain F1 score with HTTP Keys

(b) Per-domain F1 score with Recon Words

Fig. 27: Zoomed-in version of per-domain prediction with SVM and two feature spaces: Recon Words and HTTP Keys.
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Algorithm 2: Attack with Secure Aggregation in place
Given a target user t, K total number of clients, k number of

clients who participate in a round, n feature size,
encoded value certain value that represents a feature is
present with certainty:
Initialize feature array[K][n]=-1
Sfeat  (set of features seen so far)

Phase 1:
Stuples  (set of all user k-tuples with t being the first

user in each tuple)
for each k-tuple p 2 Stuples do

Scur  (union of features of users in p)
if Sfeat is empty then

for each u in p do
for each feature f 2 Scur do

feature array[u][f] +=1
else
Snew  Scur � Sfeat

for each feature f 2 Snew do
feature array[p[0]][f ] = 0
if len(p)==2 then

feature array[p[1]][f ] =
encoded value certain
else

for each u in p[1:] do
feature array[u][f] +=1

Scommon  Scur \ Sfeat

for each feature f 2 Scommon do
for each u in p do

feature array[u][f] +=1
Sprev  Sfeat � Scur
for each feature f 2 Sprev do

for each u in p do
feature array[u][f] = 0

for each u in all users do
if feature array[u][f] � 1 &&

feature array[u][f]!=encoded value certain
then

feature array[u][f] +=1
Sfeat.update(Scur)

Phase 2:
Sfeat2  (set of features seen in Phase 2)
for u in set(K-t) do

Stuples2  (set of user k-tuples (without the target t)
with u being the first user in each tuple)
for each k-tuple p 2 Stuples2 do

repeat phase 1 with u as target
Sfeat2.update(Scur)

After Phase 2:
for f in Sfeat - Sfeat2 do

feature array[t][f ] = encoded value certain
for f in Sfeat2 - Sfeat do

feature array[t][f ] = 0
for u in range(K) do

for f in feature array[u] do
if feature array[u][f] != 0

feature array[u][f] != encoded value certain
then

feature array[u][f ] =
feature array[u][f ]/rounds user u seen

A.5 Additional Evaluation of Mitigation Approach

A5.1 This section of the Appendix provides additional results
extending Section 6.2 on Mitigation. Algorithm 2 shows the details
of the algorithm used in Sec. 6.2. Fig. 28 shows the accuracy
of the privacy attack with Secure Aggregation on. Moreover,

we show more statistics about the participating users from in-
house Facebook dataset regarding their feature (HTTP Keys) size
(Fig. 29) and their pairwise similarity based on common features
(HTTP Keys) (Fig. 30) .

Fig. 28: Evaluating Attack Algorithm 6c, with secure aggregation
on. We report the accuracy (TP+TN

T+P ), for varying k (participating
users in a round) and confidence threshold.

Fig. 29: Per user unique HTTP Keys features for in-house Face-
book dataset.

Fig. 30: Pairwise user similarity based on Jaccard similarity of
common features for in-house Facebook dataset.

A5.2: Targeting other users. This section of the Appendix
provides additional results extending Section 6.2 on Mitigation
when other users are targeted instead of User 7.
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(a) Target is User 1. (b) Target is User 4.

(c) Target is User 6. (d) Target is User 8.
Fig. 31: Accuracy of recovered features for different target users from
Facebook dataset with maximum confidence. The fewer the unique
features a user has (user 4 has the fewest), the better the worst case
accuracy is for features recovered with maximum confidence.

(a) Target is User 1. (b) Target is User 4.

(c) Target is User 6. (d) Target is User 8.
Fig. 32: Percent of recovered features for different target users from
Facebook dataset with maximum confidence.

(a) Target is User 1. (b) Target is User 4.

(c) Target is User 6. (d) Target is User 8.
Fig. 33: Cosine similarity of true and recovered features for different
target users from Facebook dataset. The larger the k the worse
the cosine similarity is due to decreasing confidence levels which
increases the distance between true and recovered features.
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